8-hydroxy-2'-deoxyguanosine ELISA Kit

Catalog Number KA0444
96 assays
Version: 03

Intended for research use only
Table of Contents

Introduction .. 3

- Intended Use .. 3
- Principle of the Assay .. 3

General Information ... 4

- Materials Supplied .. 4
- Storage Instruction .. 4
- Materials Required but Not Supplied ... 4
- Precautions for Use .. 4

Assay Protocol .. 6

- Reagent Preparation .. 6
- Sample Preparation ... 6
- Assay Procedure .. 6

Data Analysis ... 7

- Calculation of Results .. 7

Resources .. 8

- References .. 8
- Plate Layout ... 9
Introduction

Intended Use

This Kit is a competitive enzyme-linked immunosorbent assay (ELISA) for quantitative measurement of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in tissue, serum, plasma and urine resulting from oxidative damage to DNA. 8-OHdG is produced during DNA repair and its measurement may be useful as a marker of oxidative damage due to aging, cancer and other degenerative diseases.

Principle of the Assay

1. The 8-OHdG monoclonal antibody and the sample or standard are added to a microtiter plate well which has been precoated with 8-OHdG. The 8-OHdG in the sample or standard competes with the 8-OHdG bound on the plate for the 8-OHdG monoclonal antibody binding sites. Therefore, higher concentrations of 8-OHdG in the sample solution lead to a reduced binding of the antibody to the 8-OHdG on the plate.

2. The antibodies that are bound to the 8-OHdG in the sample are washed out of the well, while those that have bound to the 8-OHdG coated on the plate will remain.

3. The enzyme-labeled secondary antibody is added and binds to the monoclonal antibody that remains on the plate.

4. Unbound enzyme-labeled secondary antibody is removed by a wash step.

5. Addition of a chromogen results in the development of color in proportion to the amount of antibody bound to the plate.

6. The color reaction is terminated and the absorbance is measured.
General Information

Materials Supplied

List of component

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-OHdG Microtiter Plate: Precoated With 8-OHdG (8×12 wells, Split Type)</td>
<td>1 Plate</td>
</tr>
<tr>
<td>Primary Antibody: Monoclonal Antibody Specific For 8-OHdG</td>
<td>1 Vial</td>
</tr>
<tr>
<td>Primary Antibody Dilution Buffer: Phosphate Buffered Saline</td>
<td>6 mL</td>
</tr>
<tr>
<td>Secondary Antibody: HRP-Conjugated Antibody</td>
<td>1 Vial</td>
</tr>
<tr>
<td>Secondary Antibody Dilution Buffer: Phosphate Buffered Saline</td>
<td>12 mL</td>
</tr>
<tr>
<td>Chromogen: 3,3',5,5'-Tetramethylbenzidine</td>
<td>250 µL</td>
</tr>
<tr>
<td>Chromogen Dilution Buffer: Hydrogen Peroxide/Citrate-Phosphate Buffered Saline</td>
<td>12 mL</td>
</tr>
<tr>
<td>Washing Buffer (5x): Concentrated Phosphate Buffered Saline</td>
<td>2 at 26 mL</td>
</tr>
<tr>
<td>Stop Solution: 1M Phosphoric Acid</td>
<td>12 mL</td>
</tr>
<tr>
<td>Standards 1-6: 0.5, 2.0, 8.0, 20.0, 80.0, 200.0 ng/mL 8-OHdG</td>
<td>1 mL each</td>
</tr>
<tr>
<td>Plate Seal: Adhesive sheet for covering plate</td>
<td>1 Sheet</td>
</tr>
</tbody>
</table>

Storage Instruction

Store reagents tightly closed at 2 - 8°C in the dark. Do not freeze. When stored properly, the unopened reagents are stable until the expiration date printed on the box label.

Materials Required but Not Supplied

- 50 µL micropipettor and tips
- Multi-channel (50-200 µL) micropipettor or repeating pipettor and tips
- Trays for multi-channel micropipettor
- 37°C Incubator or microtiter plate shaker/incubator (preferred).

Precautions for Use

- Precautions
- Use established laboratory precautions when handling or disposing any chemicals contained in this product. If any of the components come in contact with skin or eyes, rinse immediately with plenty of water. Seek medical advice.
- For Research Use Only. Not For Use in Diagnostic Procedures.
- For in Vitro Use Only
• Limitations
✓ To avoid edge effects, the use of outermost wells (Rows A and H) is not recommended. To maintain uniform temperature across the plate, fill any unused wells with water to the same volume as sample wells during incubation steps.
Assay Protocol

Reagent Preparation

Dilute Washing Buffer 1/5 with deionized water prior to use.

Sample Preparation

✓ Urine: Pre-treatment of clear samples is not needed. Centrifugation at 2,000 x g for 10 minutes is recommended for samples containing precipitate.
✓ Serum: Filtration of serum using ultra-filtration (cut off molecular weight 10,000) is necessary.
✓ DNA in Tissue: Extract and digest DNA in the samples before adding to assay.

Assay Procedure

• If controls are desired, aliquot pooled samples and freeze at -70°C. Establish acceptable assay ranges for these controls based on in-house mean and precision.
• Microtiter Plate Reader set up to measure absorbance at 450 nm.
• Bring all reagents and samples to room temperature before use.
1. Reconstitute the Primary Antibody with the Primary Antibody Dilution Buffer.
2. Add 50 µL of sample or standard per well. To prevent edge effects, do not use outermost rows (Rows A and H).
3. Add 50 µL of reconstituted Primary Antibody to all wells except Blank. Seal plate tightly with Plate Seal. Shake plate from side to side to mix fully. Incubate at 37°C for 1 hour.
4. Pour off contents of plate. Pipette 250 µL diluted Washing Buffer into each well. Wash thoroughly by agitation, dispose of Washing Buffer. Invert plate and blot against clean paper towel to remove any remaining washing buffer. Repeat wash twice.
5. Reconstitute the Secondary Antibody with the Secondary Antibody Dilution Buffer.
6. Add 100 µL of reconstituted Secondary Antibody per well. Seal plate tightly with Plate Seal. Shake plate from side to side to mix fully. Incubate at 37°C for 1 hour.
7. Dilute the Chromogen with 100 volumes of Chromogen Dilution Buffer.
8. Repeat step 4.
9. Add 100 µL of the diluted Chromogen per well. Shake plate from side to side to mix fully. Incubate at room temperature in the dark for 15 minutes.
10. Add 100 µL of the Stop Solution, mix, wait 3 minutes and read the absorbance at 450 nm.
Data Analysis

Calculation of Results

Generate the standard curve by plotting absorbance vs. log of concentration. The recommended curve fit analysis is the 4-parameter logistic function:

\[y = \frac{a-d}{1+(x/c)^b} + d \]

Use the absorbance values obtained for test samples to determine concentration from the calibration curve. This standard curve was generated for demonstration purpose only. A standard curve must be run with each assay.
Resources

References

Plate Layout

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td>0.5 ng/mL</td>
<td>2.0 ng/mL</td>
<td>8.0 ng/mL</td>
<td>20.0 ng/mL</td>
<td>80.0 ng/mL</td>
<td>200.0 ng/mL</td>
<td>Blank</td>
<td>0.5 ng/mL</td>
<td>2.0 ng/mL</td>
<td>8.0 ng/mL</td>
<td>20.0 ng/mL</td>
</tr>
<tr>
<td>B</td>
<td>Blank</td>
<td>0.5 ng/mL</td>
<td>2.0 ng/mL</td>
<td>8.0 ng/mL</td>
<td>20.0 ng/mL</td>
<td>80.0 ng/mL</td>
<td>200.0 ng/mL</td>
<td>Blank</td>
<td>0.5 ng/mL</td>
<td>2.0 ng/mL</td>
<td>8.0 ng/mL</td>
<td>20.0 ng/mL</td>
</tr>
<tr>
<td>C</td>
<td>2.0 ng/mL</td>
<td>8.0 ng/mL</td>
<td>20.0 ng/mL</td>
<td>80.0 ng/mL</td>
<td>200.0 ng/mL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>D</td>
<td>8.0 ng/mL</td>
<td>20.0 ng/mL</td>
<td>80.0 ng/mL</td>
<td>200.0 ng/mL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>E</td>
<td>20.0 ng/mL</td>
<td>80.0 ng/mL</td>
<td>200.0 ng/mL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F</td>
<td>80.0 ng/mL</td>
<td>200.0 ng/mL</td>
<td>X</td>
</tr>
<tr>
<td>G</td>
<td>200.0 ng/mL</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
</tbody>
</table>