

Magnesium Assay Kit

Catalog Number KA0813

100 assays

Version: 02

Intended for research use only

Table of Contents

Introduction	3
Background	3
General Information	4
Materials Supplied	4
Storage Instruction	4
Assay Protocol	5
Reagent Preparation	5
Assay Procedure	5
Data Analysis	6
Calculation of Results	6

Introduction

Background

Magnesium is the 11th most abundant element by mass in the human body. Mg^{+2} is essential to all living cells where it plays an important role in facilitating the processing of biological polyphosphates like ATP, DNA, RNA and enzyme functions. Mg^{+2} is the metallic ion at the center of chlorophyll, and a common additive to fertilizers. Mg^{+2} compounds are used as laxatives, antacids, and used to stabilize abnormal nerve excitation and blood vessel spasm i.e., eclampsia. The Magnesium Assay Kit provides a simple sensitive means of quantitating magnesium in a variety of biological samples. The kit takes advantage of the specific requirement of glycerol kinase for Mg^{+2} . An enzyme linked reaction leads to formation of an intensely colored (λ max = 450 nm) product whose formation is proportional to Mg^{+2} concentration. The linear range of the assay is 2-15 nmoles with detection sensitivity~ 40 μ M.

General Information

Materials Supplied

List of component

Component	Amount
Magnesium Assay Buffer	25 mL
Magnesium Developer: lyophilized.	1 vial
Magnesium Enzyme Mix: lyophilized.	1 vial
Magnesium Standard (150 nmol/µL)	0.1 mL

Storage Instruction

Store kit at -20°C, protect from light. Warm buffer to room temperature before use. Briefly centrifuge all small vials prior to opening.

Assay Protocol

Reagent Preparation

- Developer: Dissolve with 1.1 mL dH₂O. Stable for two months at 4°C.
- Magnesium Enzyme Mix: Dissolve in 550 µL Assay Buffer. Aliquot and store at -20°C. Use within two
 months.
- Magnesium Standard: Ready to use as supplied. 150 nmol/μL of Mg⁺² Standard stock solution. Store at -20°C. Mix before each use.

Assay Procedure

1. Standard Curve Preparations:

Dilute the standard to 1.5 nmol/ μ L by adding 10 μ L of the 150 nmol/ μ L Magnesium Standard to 990 μ L of distilled water, mix well. Add 0, 2, 4, 6, 8, 10 μ L into a series of wells. Adjust volume to 50 μ L/well with distilled water to generate 0, 3, 6, 9, 12, 15 nmol/well of Magnesium Standard.

2. Sample Preparation:

Tissue or cells can be extracted with 4 volume of Magnesium Assay Buffer, spin 16000g for 10 min to get clear extract. Add 1-50 μ L of liquid sample into 96 well plate, bring total volume to 50 μ L with water. Normal serum contains Mg²⁺ 0.7-1.05 mM (1.65-2.55 mg/dL), use 5 μ L serum for testing. Urine should be diluted 10X. For unknown samples, we suggest testing different amount of samples to ensure OD is in the linear range.

3. Magnesium Reaction Mix: Mix enough reagent for the number of samples and standards to be performed: For each well, prepare a total 50 µL Reaction Mix containing:

35 µL Magnesium Assay Buffer

10 µL Developer

5 µL Magnesium Enzyme Mix

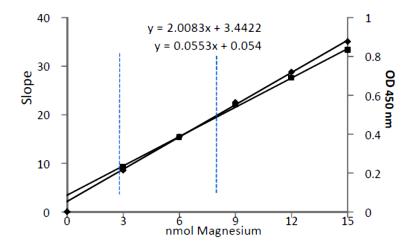
- 4. Add 50 μL of the Reaction Mix to each well containing the Magnesium Standard and test samples. For best results, use a multichannel pipettor to initiate reaction in all samples at the same time. Mix well.
- 5. Incubate at 37°C for 10 mim. Read the plate OD450 nm to get A₀ for each standard or sample. *Notes:*
 - ✓ Since enzyme kinetics are sensitive to temperature variation, the reaction rate will increase as the temperature rises. The reaction takes ~ 10 minutes to reach a linear reaction rate.
 - ✓ NAD(P)H etc. in samples may generate background, the 10 min waiting time can correct these nonspecific background.
 - \checkmark Mn^{2+} , Zn^{2+} , Nl^{2+} , Fe^{2+} , Cu^{2+} , Co^{2+} , Ca^{2+} do not interfere with the assay.
- 6. Incubate the reaction for additional 10-30 min, read the OD again to get reading A. We recommend monitor the reaction kinetics to ensure the readings are in linear range when read the plate for the additional 10-30 minutes. All readings should not exceed 1.5 OD

Data Analysis

Calculation of Results

Subtract A_0 from standard and sample readings to get $\Delta OD = A-A_0$. Plot Magnesium standard curve. Apply sample ΔOD to the standard curve to get Mg^{2+} amount B (nmol) in the reaction well. Mg^{2+} concentration:

$$C = B/V (nmol/mL or \mu M)$$


Where:

B is Mg²⁺ amount in the reaction well (in nmol).

V is the sample volume added into the reaction well (in mL).

Magnesium molecular weight: 24.3 g/mol, 1 mM = 2.43 mg/dL.

The assay may also be calculated by monitoring reaction slopes in the standards and samples reaction.

Magnesium standard curve: Assay is performed according to kit protocol. Vertical dotted lines indicate the lower and upper limits of normal serum Mg²⁺ concentrations.