

Glucose-6-Phosphate Dehydrogenase Assay Kit

Catalog Number KA0880

100 assays

Version: 03

Intended for research use only

Table of Contents

Introduction	3
Background	3
General Information	4
Materials Supplied	4
Storage Instruction	4
Assay Protocol	5
Reagent Preparation	5
Assay Procedure	5
Data Analysis	6
Calculation of Results	6
Resources	7
Troubleshooting	7

Introduction

Background

Glucose-6-phosphate dehydrogenase (G6PDH) is a cytosolic enzyme in the pentose phosphate pathway, a metabolic pathway that supplies reducing energy to cells (such as erythrocytes) by maintaining the level of the co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). The NADPH in turn maintains the level of glutathione in these cells that helps protect the red blood cells against oxidative damage. Of greater quantitative importance is the production of NADPH for tissues actively engaged in biosynthesis of fatty acids and/or isoprenoids, such as the liver, mammary glands, adipose tissue, and the adrenal glands. The Glucose-6-Phosphate Dehydrogenase Assay Kit is a simple, sensitive and rapid assay detects the activity of G6PDH in a variety of samples. In the assay, glucose-6-phosphate is oxidized with the generation of a product which is utilized to convert a nearly colorless probe to an intensely colored product with an absorbance at 450nm. The G6PDH Assay Kit can detect as low as 0.04mU G6PDH per well.

General Information

Materials Supplied

List of component

Component	Amount
G6PDH Assay Buffer	25 ml
G6PDH Substrate: lyophilized.	1 vial
G6PDH Developer: lyophilized.	1 vial
G6PDH Positive Control: lyophilized.	1 vial
NADH Standard (0.5 µmol): lyophilized	1 vial

Storage Instruction

Store kit at -20°C, protect from light. Warm Assay Buffer to room temperature before use. Briefly centrifuge all small vials prior to opening.

Assay Protocol

Reagent Preparation

- ✓ G6PDH Substrate Mix: Reconstitute with 0.22 ml of Assay Buffer and mix thoroughly. Stable for 2 months at 4°C.
- ✓ G6PDH Developer: Dissolve with 0.22 ml dH₂O. Pipette up and down to dissolve. Stable for 2 months at -20°C.
- ✓ G6PDH Positive Control: Dissolve in 100 µl G6PDH Assay Buffer and mix thoroughly. Aliquot some amount into each vial, avoid freeze/thaw cycles. Keep cold while in use. Stable for 2 months at -20°C.
- \checkmark NADH Standard: Dissolve in 400 μl dH₂O to generate 1.25 mM (1.25 nmol/μl) NADH Standard solution. Keep cold while in use. Store at -20°C.

Assay Procedure

- 1. Tissue or erythrocyte Sample Preparation:
 - Samples (10-100 mg) should be rapidly homogenized with an equivalent volume of ice cold PBS or other buffer (pH 6.5-8). Add 1-50 μ l samples into duplicate wells of a 96-well plate and bring volume to 50 μ l with Assay Buffer. We suggest testing several doses of your samples to ensure readings are within the linear range.
- 2. Dilute Positive Control: Take 10 μl of the Positive Control and add 990 μl Assay Buffer. This should be a suitable dilution to get 0.1-1.0 OD in 30 minutes of incubation. Use 1-10 μl of the diluted Positive Control; adjust final volume to 50 μl with Assay Buffer.
- 3. Develop: Mix enough reagent for the number of samples and standards to be performed: For each well, prepare a total 50 µl Reaction Mix containing:

Reaction Mix

G6PDH Assay Buffer 46 µl

G6PDH Substrate 2 µl

G6PDH Developer 2 µl

Add 50 μ l of the Reaction Mix to each well containing the Positive Control or test samples. Measure O.D. 450 nm at T₁ to read A₁, measure O.D. 450 nm again at T₂ after incubating the reaction at 37°C for 30 min (or longer if the G6PDH activity is low) to read A₂, protect from light. Δ A450 nm = A₂ – A₁.

Note: It is essential to read A_1 and A_2 in the reaction linear range. It will be more accurate if you read the reaction kinetics. Then choose A_1 , A_2 , in the reaction linear range.

4. NADH Standard Curve: Add 0, 2, 4, 6, 8, and 10μl of the 1.25 mM NADH Standard into 96-well plate in duplicate to generate 0, 2.5, 5.0, 7.5, 10.0, and 12.5 nmol/well standard. Bring the final volume to 50 μl with Assay Buffer, and then add 50 μl Reaction Mix to each standard, mix well. Measure at O.D.450 nm.

Data Analysis

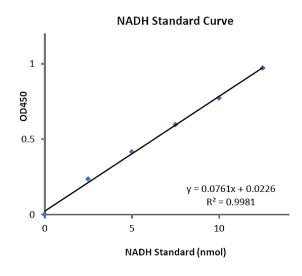
Calculation of Results

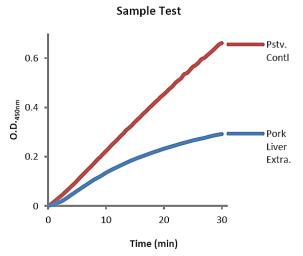
Subtract the background, plot NADH standard Curve. Apply the ΔA_{450nm} to the standard curve to get B (the NADH amount that was generated between T_1 and T_2).

G6PDH Activity =
$$\frac{B}{(T_2-T_1) \times V}$$
 x Sample dilution = nmol/min/ml = mU/mL

Where:

B is the NADH amount that was generated between T_1 and T_2 (in nmol).


 T_1 is the time of first reading (A_1) (in min).


 T_2 is the time of second reading (A₂) (in min).

V is the pretreated sample volume added into the reaction well (in ml).

Unit Definition

One unit defines as the amount of enzyme that catalyzes the conversion of 1.0μmol of glucose-6-phosphate into 6-phosphoglucono-δ-lactone and generates 1.0 μmol of NAD⁺ to NADH per minute at 37°C.

Resources

Troubleshooting

Problems	Cause	Solution
Assay not	Use of ice-cold assay buffer.	Assay buffer must be at room temperature.
working	Omission of a step in the protocol.	Refer and follow the data sheet precisely.
	Plate read at incorrect wavelength.	Check the wavelength in the datasheet and
	Use of a different 96-well plate.	the filter settings of the instrument.
		Fluorescence: Black plates (clear bottoms);
		Luminescence: White plates; Colorimeters:
		Clear plates.
Samples with	Use of an incompatible sample type.	Refer to data sheet for details about
erratic readings	Sample prepared in a different buffer.	incompatible samples.
	Cell/tissue samples were not	Use the assay buffer provided in the kit or
	completely homogenized.	refer data sheet for instructions.
	Samples used after multiple	Use Dounce homogenizer (increase the
	free-thaw cycles.	number of strokes); observe for lysis under
	Presence of interfering substance in	microscope.
	the sample.	Aliquot and freeze samples if needed to
	Use of old inappropriately stored	use multiple times.
	samples.	Troubleshoot if needed.
		Use fresh samples or store at correct
		temperature until use.
Lower/Higher	Improperly thawed components.	Thaw al components completely and mix
readings in	Use of expired kit or improperly	gently before use.
Samples and	stored reagents.	Always check the expiry date and store the
Standards	Allowing the reagents to sit for	components appropriately.
	extended times on ice.	Always thaw and prepare fresh reaction
	Incorrect incubation times or	mix before use
	temperatures.	Refer to datasheet and verify correct
	Incorrect volumes used.	incubation times and temperatures.
		Use calibrate pipettes and aliquot correctly.
Reading do not	Use of partially thawed components.	Thaw and resuspend all components
follow a linear	Pipetting errors in the standard.	before preparing the reaction mix.
pattern for	Pipetting errors in the reaction mix.	Avoid pipetting small volumes.
Standard curve	Air bubbles formed in well.	Prepare a master reaction mix whenever
	Standard stock is at an incorrect	possible.
	concentration.	Pipette gently against the wall of the tubes.

	Calculation errors.	Always refer the dilutions in the data sheet.
	Substituting reagents from older	Recheck calculations after referring the
	kits/lots.	data sheet.
		Use fresh component from the same kit.
Unanticipated	Measured at incorrect wavelength.	Check the equipment and the filter setting.
results	Samples contain interfering	Troubleshoot if it interferes with the kit.
	substances.	Refer data sheet to check if sample is
	Use of incompatible sample type.	compatible with the kit or optimization is
	Sample reading above/below the	needed.
	linear range.	Concentrate/Dilute sample so as to be in
		the linear range.

Note: The most probable list of causes is under each problem section. Causes/Solutions may overlap with other problems.