

Catalase Assay Kit

Catalog Number KA0884 100 assays

Version: 04

Intended for research use only

www.abnova.com

Table of Contents

Introduction	3
Background	3
General Information	4
Materials Supplied	4
Storage Instruction	4
Assay Protocol	5
Reagent Preparation	5
Assay Procedure	5
Data Analysis	7
Calculation of Results	7
Resources	8
Troubleshooting	8

Introduction

Background

Catalase (EC 1.11.1.6) is a ubiquitous antioxidant enzyme that is present in nearly all living organisms. It functions to catalyze the decomposition of hydrogen peroxide (H_2O_2) to water and oxygen. The Catalase Assay Kit provides a highly sensitive, simple, direct and HTS-ready assay for measuring Catalase activity in biological samples. In the assay, catalase first reacts with H_2O_2 to produce water and oxygen, the unconverted H_2O_2 reacts with OxiRed probe to produce a product, which can be measured at 570 nm (Colorimetric method) or at Ex/Em=535/587nm (fluorometric method). Catalase activity is reversely proportional to the signal. The kit can detects 1 μ U or less of catalase activity in samples.

General Information

Materials Supplied

List of component

Component	Amount
Catalase Assay Buffer	25 ml
OxiRed Probe (in DMSO)	200 µl
HRP (lyophilized)	1 vial
H ₂ O ₂ (0.88M)	25 μl
Stop Solution	1 ml
Catalase Positive Control	2 μΙ

Storage Instruction

Store kit at 4 °C, protect from light. Warm the assay buffer to room temperature before use. Briefly centrifuge vials before opening. Read the entire protocol before performing the assay.

Assay Protocol

Reagent Preparation

- ✓ OxiRed Probe: Briefly warm to completely melt the DMSO solution. Store at 4 °C, protected from light.
 Use within two months.
- ✓ HRP Solution: Dissolve with 220 µl Assay Buffer. Store at 4 ℃. Use within two months.
- ✓ Positive Control Solution: Add 500 µl Assay Buffer to Positive Control. Aliquot and store at -20 °C. Diluted Positive Control solution is stable for 2-3 days at 4 °C & for 2 months at -20 °C.
 Note: Keep samples, HRP and Catalase on ice while in use.

Assay Procedure

Sample and Positive Control Preparations
 Homogenize 0.1 gram tissues, or 10⁶ Cells, or 0.2 ml Erythrocytes on ice in 0.2 ml cold Assay Buffer;
 Centrifuge at 10,000 x g for 15 min at 4 °C; Collect the supernatant for assay, keep on ice. Liquid samples can be tested directly. Store samples at -80 °C to assay later.

Add 2-78 μ I samples or 1-5 μ I Positive Control Solution into each well, and adjust volume to total 78 μ I with Assay Buffer. Prepare sample High Control (HC) with the same amount of sample in separate wells then bring total volume to 78 μ I with Assay Buffer. Add 10 μ I of Stop Solution into the sample HC, mix and incubate at 25 °C for 5 min to completely inhibit the catalase activity in samples as High Control. For unknown samples, we suggest testing several doses of your sample to ensure the readings are within the linear range.

Reducing agents in samples may interfere with the assay. Keep DTT or β -ME below 5 μ M.

2. H₂O₂ Standard Curve

Dilute 5 μ l of 0.88M H₂O₂ into 215 μ l dH₂O to generate 20 mM H₂O₂, then take 50 μ l of the 20 mM H₂O₂ and dilute into 0.95 ml dH₂O to generate 1 mM H₂O₂. Add 0, 2, 4, 6, 8, 10 μ l of 1 mM H₂O₂ solution into 96-well plate to generate 0, 2, 4, 6, 8, 10 nmol/well H₂O₂ standard. Bring the final volume to 90 μ l with Assay Buffer. Add 10 μ l Stop Solution into each well. For the fluorometric assay, dilute the standard H₂O₂ 10-fold for the standard curve (0-1 nmol range).

Note: Diluted H_2O_2 is unstable, prepare fresh dilution each time.

3. Catalase Reaction

Add 12 μ l fresh 1 mM H₂O₂ into each well of both samples and sample HC to start the reaction, incubate at 25 °C for 30 min, and then add 10 μ l Stop solution into each sample well to stop the reaction *(Note: High Control and standard curve wells already contain Stop Solution).*

4. Develop Mix

Mix enough reagents for the number of assays to be performed. For each well, prepare a total 50 μl Develop Mix containing:

46 μl Assay Buffer 2 μl OxiRed Probe 2 μl HRP solution

Add 50 µl of the Develop Mix to each test samples, controls, and standards. Mix well and incubate at 25 °C for 10 min. Measure O.D. 570 nm in a plate reader.

Note: For low amounts of catalase, you can either increase the incubate time prior to adding the Stop Solution or use the fluorometric method. For the fluorimetric method, decrease the 1 mM H_2O_2 amount to 1.5 µl and OxiRed Probe to 0.3 µl in the reaction; compensate the volume with Assay Buffer.

Data Analysis

Calculation of Results

Signal changes by catalase in sample is $\Delta A = A_{HC} - A_{Sample}$. A_{HC} is the reading of sample High Control, A_{Sample} is the reading of sample in 30 min. Plot the H₂O₂ Standard Curve. Apply the ΔA to the H₂O₂ standard curve to get B nmol of H₂O₂ decomposed by catalase in 30 min reaction. Catalase activity can be calculated:

Catalase Activity = $\frac{B}{30 \times V}$ × Sample Dilution Factor = nmol/min/ml = mU/mL

Where: B is the decomposed H_2O_2 amount from H_2O_2 Standard Curve (in nmol).

V is the pretreated sample volume added into the reaction well (in ml).

30 is reaction time 30 min.

Unit definition: One unit of catalase is the amount of catalase decomposes 1.0 μ mol of H₂O₂ per min at pH 4.5 at 25 °C.

Resources

Troubleshooting

Problems	Cause	Solution
Assay not working	 Use of ice-cold assay buffer Omission of a step in the protocol Plate read at incorrect wavelength Use of a different 96-well plate 	 Assay buffer must be at room temperature Refer and follow the data sheet precisely Check the wavelength in the data sheet and the filter settings of the instrument Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates
Samples with erratic readings	 Use of an incompatible sample type Samples prepared in a different buffer Cell/ tissue samples were not completely homogenized Samples used after multiple free-thaw cycles Presence of interfering substance in the sample Use of old or inappropriately stored samples 	 Refer data sheet for details about incompatible samples Use the assay buffer provided in the kit or refer data sheet for instructions Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope Aliquot and freeze samples if needed to use multiple times Troubleshoot if needed Use fresh samples or store at correct temperatures till use
Lower/ Higher readings in Samples and Standards	 Improperly thawed components Use of expired kit or improperly stored reagents Allowing the reagents to sit for extended times on ice Incorrect incubation times or temperatures Incorrect volumes used 	 Thaw all components completely and mix gently before use Always check the expiry date and store the components appropriately Always thaw and prepare fresh reaction mix before use Refer datasheet & verify correct incubation times and temperatures Use calibrated pipettes and aliquot correctly

Readings do not	Use of partially thawed	Thaw and resuspend all components before
follow a linear	components	preparing the reaction mix
pattern for Standard	 Pipetting errors in the standard 	 Avoid pipetting small volumes
curve	Pipetting errors in the reaction mix	 Prepare a master reaction mix whenever
	 Air bubbles formed in well 	possible
	 Standard stock is at an incorrect 	 Pipette gently against the wall of the tubes
	concentration	 Always refer the dilutions in the data sheet
	 Calculation errors 	Recheck calculations after referring the data
	 Substituting reagents from older 	sheet
	kits/ lots	Use fresh components from the same kit
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting
	 Samples contain interfering 	 Troubleshoot if it interferes with the kit
	substances	 Refer data sheet to check if sample is
	 Use of incompatible sample type 	compatible with the kit or optimization is
	Sample readings above/below the	needed
	linear range	Concentrate/ Dilute sample so as to be in
		the linear range

Note: The most probable list of causes is under each problem section. Causes/ Solutions may overlap with other problems.