LKM-1 Ab ELISA Kit

Catalog Number KA1280
96 assays
Version: 02

Intended for research use only
Table of Contents

Introduction .. 3
 - Intended Use .. 3
 - Background ... 3
 - Principle of the Assay .. 3

General Information ... 4
 - Materials Supplied ... 4
 - Storage Instruction ... 4
 - Materials Required but Not Supplied .. 4
 - Precautions for Use .. 5

Assay Protocol .. 6
 - Reagent Preparation .. 6
 - Sample Preparation .. 6
 - Assay Procedure ... 6

Data Analysis ... 8
 - Calculation of Results .. 8
 - Performance Characteristics ... 8

Resources ... 11
 - References .. 11
 - Plate Layout ... 12
Introduction

Intended Use

LKM-1 is a solid phase enzyme immunoassay employing human recombinant cytochrome p450 IID6 for the quantitative and qualitative detection of antibodies against liver-kidney microsomes (LKM) in human serum.

Background

Autoimmune hepatitis (AIH) is a chronic progressive liver disease of unknown origin that responds well to immunosuppressive therapy, but has a poor prognosis if untreated. Early and accurate diagnosis is therefore of great importance. AIH is characterized by histological features of periportal hepatitis in the absence of viral markers, by hypergammaglobulinemia and, in the majority of patients, by the presence of autoantibodies in serum. Anti-nuclear antibodies (ANA), smooth muscle antibodies (SMA), anti-liver kidney microsomal antibodies (LKM) and antibodies against soluble liver antigen (SLA) are marker autoantibodies for AIH. 52% of AIH patients are positive for ANA and/or SMA, 20% for SLA and 3% for LKM-1. These antibodies are of diagnostic value for AIH but the only autoantibodies highly specific for AIH are SLA. ANA/SMA also occur in 10-15% of patients with viral hepatitis and other immune-mediated diseases. LKM-1 are also associated with hepatitis C.

Three types of LKM antibodies can be distinguished according to the target antigens. LKM-1 antibodies are directed against cytochrome p450 IID6, a 50 kDa cytoplasmic protein found in hepatocytes and renal proximal tubular cells. LKM-2 antibodies are associated with ticrynafen (tienilic acid) – induced hepatitis. The target antigen is cytochrome p450 IIC9, a cytochrome p450 isoenzyme that catalyzes the metabolic oxidation of the drug. LKM-3 antibodies are associated with chronic hepatitis D. The target antigen is UDP-1 glucuronosyl transferase.

LKM-1 associated AIH predominantly occurs in girls between 2 and 14 years of age, thus determination of LKM-1 is very important in pediatrics.

Principle of the Assay

Serum samples diluted 1:101 are incubated in the microplates coated with the specific antigen. Antibodies, if present in the specimen, bind to the antigen. The unbound fraction is washed off in the following step. Afterwards anti-human immunoglobulins conjugated to horseradish peroxidase (conjugate) are incubated and react with the antigen-antibody complex of the samples in the microplates. Unbound conjugate is washed off in the following step. Addition of TMB-substrate generates an enzymatic colorimetric (blue) reaction, which is stopped by diluted acid (color changes to yellow). The rate of color formation from the chromogen is a function of the amount of conjugate bound to the antigen-antibody complex and this is proportional to the initial concentration of the respective antibodies in the samples.
General Information

Materials Supplied

List of component

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microplate: Consisting of 12 modules of 8 wells each. Ready to use.</td>
<td>96 (8x12) wells</td>
</tr>
<tr>
<td>Sample buffer 5x, 5x concentrated. Containing: Tris, NaCl, BSA, sodium azide <0.1% (preservative)</td>
<td>20 ml</td>
</tr>
<tr>
<td>Wash buffer 50x, 50x concentrated. Containing: Tris, NaCl, Tween 20, sodium azide < 0.1% (preservative). Ready to use.</td>
<td>20 ml</td>
</tr>
<tr>
<td>Negative Control. Containing: Human serum (diluted), sodium azide < 0.1% (preservative). Ready to use.</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>Positive Control and negative (2), containing MPO antibodies in a serum/buffer matrix (PBS, BSA, detergent, NaN₃ 0.09%), yellow. Ready to use.</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>Cut-off Calibrator. Containing: Human serum (diluted), sodium azide < 0.1% (preservative)</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>Calibrators A-F (0, 3, 10, 30, 100, 300 U/ml), containing: Human serum (diluted), sodium azide < 0.1% (preservative). Color increasing with concentration: yellow solutions. Ready to use.</td>
<td>1.5 ml x 6</td>
</tr>
<tr>
<td>Conjugate. containing: Anti-human immunoglobulins conjugated to horseradish peroxidase. Ready to use.</td>
<td>15 ml</td>
</tr>
<tr>
<td>TMB Substrate; containing Stabilized TMB/H₂O₂. Ready to use.</td>
<td>15 ml</td>
</tr>
<tr>
<td>Stop solution; Containing: 1M Hydrochloric Acid. Ready to use.</td>
<td>15 ml</td>
</tr>
</tbody>
</table>

Storage Instruction

Store all reagents and the microplate at 2-8°C/35-46°F, in their original containers. Once prepared, reconstituted solutions are stable for 1 month at 4°C/39°F, at least. Reagents and the microplate shall be used within the expiry date indicated on each component, only. Avoid intense exposure of TMB solution to light. Store microplates in designated foil, including the desiccant, and seal tightly.

Materials Required but Not Supplied

- Microplate reader 450 nm reading filter and optional 620 nm reference filter (600-900 nm).
- Glass ware (cylinder 100-1000ml), test tubes for dilutions.
- Vortex mixer, precision pipettes (10, 100, 200, 500,1000 μl) or adjustable multipipette (100-1000ml).
- Microplate washing device (300 μl repeating or multichannel pipette or automated system), adsorbent paper.
- Our tests are designs to be used with purified water according to the definition of the United States Pharmacopeia (USP 26 - NF 21) and the European Pharmacopeia (Eur.Ph. 4th ed.).
Precautions for Use

✓ Health hazard data

The product is for research use only. Although this product is not considered particularly toxic or dangerous in conditions of normal use, refer to the following for maximum safety:

- Recommendations and precautions

This kit contains potentially hazardous components. Though kit reagents are not classified being irritant to eyes and skin we recommend to avoid contact with eyes and skin and wear disposable gloves.

WARNING ! Calibrators, Controls and Buffers contain sodium azide (NaN₃) as a preservative. NaN₃ may be toxic if ingested or adsorbed by skin or eyes. NaN₃ may react with lead and copper plumbing to form highly explosive metal azides. On disposal, flush with a large volume of water to prevent azide build-up. Please refer to decontamination procedures as outlined by CDC or other local/national guidelines.

Do not smoke, eat or drink when manipulating the kit.

Do not pipette by mouth.

All human source material used for some reagents of this kit (controls, standards e.g.) has been tested by approved methods and found negative for HbsAg, Hepatitis C and HIV 1. However, no test can guarantee the absence of viral agents in such material completely. Thus handle kit controls, standards and patient samples as if capable of transmitting infectious diseases and according to national requirements.

✓ General directions for use

- Do not mix or substitute reagents or microplates from different lot numbers. This may lead to variations in the results.
- Allow all components to reach room temperature (20-32°C/68-89.6°F) before use, mix well and follow the recommended incubation scheme for an optimum performance of the test.
- Incubation: We recommend test performance at 30°C/86°F for automated systems.
- Never expose components to higher temperature than 37°C/ 98.6 °F.
- Always pipette substrate solution with brand new tips only. Protect this reagent from light. Never pipette conjugate with tips used with other reagents prior.
Assay Protocol

Reagent Preparation

✓ Wash buffer
Dilute the concentrated wash buffer 1:50 with distilled water (e.g. 20 ml plus 980 ml)
✓ Sample buffer
Dilute the concentrated sample buffer 1:5 with distilled water (e.g. 20 ml plus 80 ml).

Sample Preparation

✓ Sample Collection, Handling and Storage
Use preferentially freshly collected serum samples. Blood withdrawal must follow national requirements.
Do not use icteric, lipemic, hemolysed or bacterially contaminated samples. Sera with particles should be cleared by low speed centrifugation (<1000 x g). Blood samples should be collected in clean, dry and empty tubes. After separation, the serum samples should be used immediately, respectively stored tightly closed at 2-8°C/35-46°F up to three days, or frozen at -20°C/-4°F for longer periods
✓ Sample Preparation
Dilute serum samples 1:101 with sample buffer (1x)
e.g. 1000 μl sample buffer (1x) + 10 μl serum. Mix well!

Assay Procedure

✓ Preparations prior to pipetting
• Washing:
Prepare 20 ml of diluted wash buffer (1x) per 8 wells or 200 ml for 96 wells
e.g. 4 ml concentrate plus 196 ml distilled water.
• Automated washing:
Consider excess volumes required for setting up the instrument and dead volume of robot pipette.
• Manual washing:
Discard liquid from wells by inverting the plate. Knock the microwell frame with wells downside vigorously on clean adsorbent paper. Pipette 300 μl of diluted wash buffer into each well, wait for 20 seconds. Repeat the whole procedure twice again.
• Microplates:
Calculate the number of wells required for the test. Remove unused wells from the frame, replace and store in the provided plastic bag, together with desiccant, seal tightly (2-8°C/35-46°F).
✓ Work flow
• For pipetting scheme see Annex A, for the test procedure see Annex B
• We recommend pipetting samples and calibrators in duplicate.
- Cut-off calibrator should be used for qualitative testing only.
1. Pipette 100 μl of each patient’s diluted serum into the designated microwells.
2. Pipette 100 μl calibrators OR cut-off calibrator and negative and positive controls into the designated wells.
3. Incubate for 30 minutes at 20-32°C/68-89.6°F.
4. Wash 3x with 300 μl washing buffer (diluted 1:50).
5. Pipette 100 μl conjugate into each well.
6. Incubate for 30 minutes at 20-32°C/68-89.6°F.
7. Wash 3x with 300 μl washing buffer (diluted 1:50).
8. Pipette 100 μl TMB substrate into each well.
9. Incubate for 30 minutes at 20-32°C/68-89.6°F, protected from intense light.
10. Pipette 100 μl stop solution into each well, using the same order as pipetting the substrate.
11. Incubate 5 minutes minimum.
12. Agitate plate carefully for 5 sec.
13. Read absorbance at 450 nm (optionally 450/620 nm) within 30 minutes.
Data Analysis

Calculation of Results

For quantitative interpretation establish the standard curve by plotting the optical density (OD) of each calibrator (y-axis) with respect to the corresponding concentration values in U/ml (x-axis). For best results we recommend log/lin coordinates and 4-Parameter Fit. From the OD of each sample, read the corresponding antibody concentrations expressed in U/ml.

<table>
<thead>
<tr>
<th>Normal Range</th>
<th>Equivocal Range</th>
<th>Positive Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 U/ml</td>
<td>12 - 18 U/ml</td>
<td>>18 U/ml</td>
</tr>
</tbody>
</table>

✓ Example of a standard curve

We recommend pipetting calibrators in parallel for each run.

<table>
<thead>
<tr>
<th>Calibrators IgG</th>
<th>OD 450/620 nm</th>
<th>CV % (Variation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 U/ml</td>
<td>0.046</td>
<td>2.4</td>
</tr>
<tr>
<td>3 U/ml</td>
<td>0.171</td>
<td>2.6</td>
</tr>
<tr>
<td>10 U/ml</td>
<td>0.372</td>
<td>1.0</td>
</tr>
<tr>
<td>30 U/ml</td>
<td>0.698</td>
<td>3.8</td>
</tr>
<tr>
<td>100 U/ml</td>
<td>1.456</td>
<td>0.4</td>
</tr>
<tr>
<td>300 U/ml</td>
<td>2.396</td>
<td>2.0</td>
</tr>
</tbody>
</table>

✓ Example of calculation

<table>
<thead>
<tr>
<th>Patient</th>
<th>Replicate (OD)</th>
<th>Mean (OD)</th>
<th>Result (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 01</td>
<td>0.533/0.569</td>
<td>0.551</td>
<td>19.8</td>
</tr>
<tr>
<td>P 02</td>
<td>1.156/1.196</td>
<td>1.176</td>
<td>68.7</td>
</tr>
</tbody>
</table>

Each laboratory should establish its own normal range based upon its own techniques, controls, equipment and patient population according to their own established procedures.

For qualitative interpretation read the optical density of the cut-off calibrator and the patient samples. Compare patient’s OD with the OD of the cut-off calibrator. For qualitative interpretation we recommend to consider sera within a range of 20% around the cut-off value as equivocal. All samples with higher ODs are considered positive, samples with lower ODs are considered negative.

✓ Negative: OD_{patient} < 0.8 x OD_{cut-off}
✓ Equivocal: 0.8 x OD_{cut-off} ≤ OD_{Sample} ≤ 1.2 x OD_{cut-off}
✓ Positive: OD_{Sample} > 1.2 x OD_{cut-off}

Performance Characteristics

✓ Technical Data
- Sample material: serum
- Sample volume: 10 µl of sample diluted 1:101 with 1x sample buffer
- Total incubation time: 90 minutes at 20-32°C/68-89.6°F
• Calibration range: 0-300 U/ml
• Analytical sensitivity: 1.0 U/ml
• Storage: at 2-8°C/35-46°F use original vials, only
• Number of determinations: 96 tests

- Specificity and sensitivity
 The microplate is coated with recombinant human cytochrome p450 IID6.
 No crossreactivities to other autoantigens have been found.

- Correlation:
 A linear regression analysis of the two products showed that the two products are equivalent. Included in these sera are 39 sera close to cut-off.

- Linearity
 Chosen sera have been tested with this kit and found to dilute linearly. However, due to the heterogeneous nature of human autoantibodies there might be samples that do not follow this rule.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Dilution Factor</th>
<th>measured concentration (U/ml)</th>
<th>expected concentration (U/ml)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 / 100</td>
<td>78.9</td>
<td>80.0</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>1 / 200</td>
<td>39.8</td>
<td>40.0</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>1 / 400</td>
<td>18.9</td>
<td>20.0</td>
<td>94.5</td>
</tr>
<tr>
<td></td>
<td>1 / 800</td>
<td>9.6</td>
<td>10.0</td>
<td>96.0</td>
</tr>
<tr>
<td>2</td>
<td>1 / 100</td>
<td>34.2</td>
<td>33.0</td>
<td>103.6</td>
</tr>
<tr>
<td></td>
<td>1 / 200</td>
<td>17.2</td>
<td>16.5</td>
<td>104.2</td>
</tr>
<tr>
<td></td>
<td>1 / 400</td>
<td>8.1</td>
<td>8.3</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>1 / 800</td>
<td>4.0</td>
<td>4.2</td>
<td>95.2</td>
</tr>
</tbody>
</table>
Precision
To determine the precision of the assay, the variability (intra and inter-assay) was assessed by examining its reproducibility on three serum samples selected to represent a range over the standard curve.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mean (U/ml)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>210.0</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>77.5</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>18.4</td>
<td>3.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mean (U/ml)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>207.0</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>73.8</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>17.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Calibration
Due the lack of international reference calibration this assay is calibrated in arbitrary units (U/ml).
Resources

References

Plate Layout

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>2</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>3</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>4</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>5</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>6</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>7</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>8</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>9</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>10</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>11</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
<tr>
<td>12</td>
<td>Cal A</td>
<td>Cal B</td>
<td>Cal C</td>
<td>Cal D</td>
<td>Cal E</td>
<td>Cal F</td>
<td>Cal C</td>
<td>Cal D</td>
</tr>
</tbody>
</table>

For qualitative interpretation use cut-off calibrator.

For quantitative interpretation use calibrators to establish a standard curve.