

# HDAC Cell-Based Assay Kit

Catalog Number KA1319

96 assays

Version: 03

Intended for research use only

www.abnova.com



# **Table of Contents**

| Introduction3                        |
|--------------------------------------|
| Background3                          |
| Principle of the Assay               |
| General Information4                 |
| Materials Supplied4                  |
| Storage Instruction4                 |
| Materials Required but Not Supplied4 |
| Precautions for Use5                 |
| Assay Protocol6                      |
| Reagent Preparation6                 |
| Sample Preparation7                  |
| Assay Procedure                      |
| Data Analysis8                       |
| Calculation of Results8              |
| Performance Characteristics9         |
| Resources11                          |
| Troubleshooting 11                   |
| References 11                        |
| Plate Layout                         |



## Introduction

#### **Background**

Nucleosomes, which fold chromosomal DNA, contain two molecules each of the core histones H2A, H2B, H3, and H4. Almost two turns of DNA are wrapped around this octameric core, which represses transcription.<sup>1</sup> The histone amino termini extend from the core, where they can be modified post-translationally by acetylation, phosphorylation, ubiquitination, and methylation, affecting their charge and function.

Acetylation of the  $\varepsilon$ -amino groups of specific histone lysines is catalyzed by histone acetyltransferases (HATs) and correlates with an open chromatin structure and gene activation. Histone deacetylases (HDACs) catalyze the hydrolytic removal of acetyl groups from histone lysine residues and correlates with chromatin condensation and transcriptional repression.<sup>2,3</sup> Therefore, HDAC inhibition results in transcriptional activation through the conformational relaxation of DNA. Changes in the transcription of key genes has linked HDAC inhibitors to blocking angiogenesis and cell cycling, and promoting apoptosis and differentiation. By targeting these key components of tumor proliferation, HDAC inhibitors are currently being explored as potential anticancer agents.<sup>4-6</sup>

#### Principle of the Assay

The HDAC Cell-Based Assay Kit provides an easy tool for studying HDAC activity modulators in whole cells. By using a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes can be measured in intact cells in a simple and homogenous manner. The fluorescence of the deacetylated reaction product can be analyzed using a plate reader or a fluorometer with excitation wavelengths of 340-360 nm and emission wavelengths of 440-465 nm. An HDAC inhibitor, trichostatin A, is included for checking specificity of the HDAC reaction.



# **General Information**

#### Materials Supplied

List of component

| Item                                     | Amount  |
|------------------------------------------|---------|
| HDAC Assay Buffer (10X)                  | 5 mL    |
| Nonidet P-40 Assay Reagent (10%)         | 500 µL  |
| HDAC Deacetylated Standard               | 400 µL  |
| HDAC1 Positive Control                   | 50 µL   |
| Cell-Based Assay HDAC Substrate          | 100 µL  |
| HDAC Developer                           | 20 mg   |
| HDAC Trichostatin A                      | 250 µL  |
| 96-Well Clear Bottom Black Culture Plate | 1 plate |

#### Storage Instruction

The kit will perform as specified if components are stored as directed below and used before the expiration date indicated on the outside of the box. For best results, remove components and store as stated below.

| Item                                     | Storage          |
|------------------------------------------|------------------|
| HDAC Assay Buffer (10X)                  | -20°C            |
| Nonidet P-40 Assay Reagent (10%)         | 4°C              |
| HDAC Deacetylated Standard               | -20°C            |
| HDAC1 Positive Control                   | -80°C            |
| Cell-Based Assay HDAC Substrate          | -20°C            |
| HDAC Developer                           | -20°C            |
| HDAC Trichostatin A                      | -20°C            |
| 96-Well Clear Bottom Black Culture Plate | Room Temperature |

#### Materials Required but Not Supplied

- ✓ Cell line such as HeLa cells or MCF-7 cells (can be obtained from ATCC); other cell lines may also be used
- ✓ A fluorometer with the capacity to measure fluorescence using an excitation wavelength of 340-360 nm and an emission wavelength of 440-465 nm
- ✓ Adjustable pipettes and a repeat pipettor
- ✓ A source of pure water; glass distilled water or HPLC-grade water is acceptable



#### Precautions for Use

Warning: This product is for research only - Not for human or veterinary diagnostic or therapeutic use.

✓ Precautions

Please read these instructions carefully before beginning this assay.

✓ Safety Data

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Material Safety Data Sheet, which has been sent via email to your institution.

- ✓ Pipetting Hints
- Use different tips to pipette each reagent.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (*i.e.*, slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.



# **Assay Protocol**

#### **Reagent Preparation**

✓ HDAC Assay Buffer (10X)

Dilute 5 mL of HDAC Assay Buffer (10X) with 45 mL of UltraPure water. This final Assay Buffer should be used for diluting the HDAC Deacetylated Standard, HDAC1 Positive Control, Cell-Based Assay HDAC Substrate, and for dissolving the HDAC Developer. The diluted buffer is stable for six months at -20°C.

✓ HDAC Deacetylated Standard

The HDAC Deacetylated Standard vial contains 400  $\mu$ L of 2.1 mM deacetylated standard in dimethylsulfoxide (DMSO). The deacetylated standard is used to prepare a standard curve for quantitative determination of HDAC activity.

To run a standard curve, obtain six clean test tubes and label them #1 through #6. Add 1.4 mL of Assay Buffer into tube #1 and 500  $\mu$ L into tubes #2-6. Transfer 20  $\mu$ L of the HDAC Deacetylated Standard to tube #1 and mix thoroughly. The concentration of this standard, the first point on the standard curve, is 30  $\mu$ M. Serially dilute the standard by removing 500  $\mu$ L from tube #1 and placing it into tube #2; mix thoroughly. Next remove 500  $\mu$ L from tube #2 and place it into tube #3; mix thoroughly. Repeat the procedure for tubes #4-5. The concentration of these standards will be 30, 15, 7.5, 3.75, and 1.88  $\mu$ M, respectively. Do not add any standard to tube #6. This tube will be your blank.

✓ HDAC1 Positive Control

The HDAC1 Positive Control vial contains 50  $\mu$ L of human recombinant HDAC1. Dilute 10  $\mu$ L of the control with 190  $\mu$ L of diluted Assay Buffer. The diluted HDAC1 is stable for four hours when stored on ice.

✓ HDAC Trichostatin A

The HDAC Trichostatin A vial contains 250  $\mu$ L of 0.21 mM Trichostatin A. Trichostatin A is an HDAC inhibitor. Dilute 50  $\mu$ L of Trichostatin A stock with 450  $\mu$ L of diluted Assay Buffer. A 10  $\mu$ L aliquot in the assay results in a final concentration of 2.1  $\mu$ M. At this concentration, HDAC activity will be completely inhibited.

✓ Cell-Based Assay HDAC Substrate

The Cell-Based Assay HDAC Substrate vial contains 100  $\mu$ L of concentrated Boc-Lys(AC)-AMC in DMSO. Prior to assaying, dilute 100  $\mu$ L of the Substrate with 1 mL of diluted Assay Buffer.

✓ HDAC Lysis/Developer Mixture

NOTE: this HDAC Lysis/Developer Mixture should be prepared immediately before use.

To one vial of Developer, add 4.5 mL of diluted Assay Buffer, 72  $\mu$ L of HDAC Trichostatin A, and 500  $\mu$ L of Nonidet P-40 Assay Reagent (10%).



#### Sample Preparation

- ✓ Cell Culture Preparation
- Seed cells in the provided clear bottom black 96-well plate at a density of (2 x 10<sup>4</sup>) (5 x 10<sup>4</sup>) cells/well in 100 µL of culture medium. For a blank control, add 100 µL of culture medium without cells to 2-3 wells of the plate.

NOTE: If you run a standard curve with the assay, add 100  $\mu$ L of culture medium without cells to 12 wells of the plate. Culture the cells overnight or until the cells reach 80% confluence.

- Treat the cells with or without compounds to be tested. We recommend that each treatment be performed in duplicate.
- Following addition of test compounds, continue to culture the cells in a CO<sub>2</sub> incubator at 37°C for 24-48 hours, or for a period of time according to your typical experimental protocol.

#### Assay Procedure

✓ Plate Set Up

There is no specific pattern for using the wells on the plate. However, a positive control in duplicate has to be assayed with the sample. We suggest that each sample be assayed at least in duplicate and to have two wells designated as background wells. We also recommend assaying each sample in the presence and absence of the HDAC inhibitor to allow for the correction of HDAC-independent fluorescence. Record the contents of each well on the template sheet provided in Plate Layout.

- 1. Centrifuge the plate in a plate centrifuge at 500 x g for five minutes.
- 2. Aspirate the culture medium.
- 3. Add 200  $\mu$ L of diluted Assay Buffer to each well and centrifuge the plate at 500 x g for five minutes.
- 4. Aspirate the supernatant.
- Add 90 μL of culture medium or positive control to non-inhibited sample wells. Add 80 μL of culture medium plus 10 μL of Trichostatin A to appropriate control wells to test assay specificity. Initiate the HDAC reactions by adding 10 μL of diluted HDAC Substrate to each well.
- Incubate the plate at 37°C for two hours for optimal development (can be 1-3 hours according to your schedule).
- 7. Add 100 μL standards prepared above to appropriate wells. Skip this step if you are not running a standard curve with the assay.
- 8. Add 50 µL of the Lysis/Developer Solution to each well.
- 9. Shake the plate on a plate shaker for a 1-2 minutes.
- 10. Incubate the plate for 15 minutes at 37°C.
- 11. Read the fluorescent intensity of each well (excitation = 340-360 nm; emission = 440-460 nm).



# **Data Analysis**

#### **Calculation of Results**

- ✓ Plot the Standard Curve
- 1. Determine the average fluorescence of the standards. Subtract the fluorescence value of the blank (standard tube #6) from itself and all other standards. This is the corrected fluorescence.
- 2. Plot the corrected fluorescence values (from step 1 above) of each standard as a function of the final concentration of Deacetylated Standards. See Figure 1, for a typical standard curve.
- ✓ Determination of HDAC activity
- 1. Determine the average fluorescence of each sample and sample plus Trichostatin A.
- 2. Subtract the Trichostatin A sample fluorescence from the non-Trichostatin A sample fluorescence to yield the corrected sample fluorescence.
- 3. Calculate the HDAC activity using the equation obtained from the linear regression of the standard curve, substituting corrected fluorescence values for each sample.

If you anticipate a high activity of HDAC in the samples, dilution may be required to obtain values that fall on the standard curve.

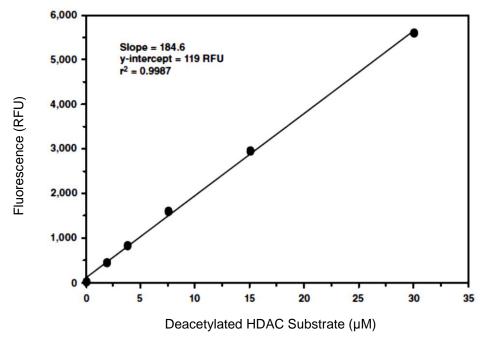



Figure 1. Deacetylated substrate standard curve



#### Performance Characteristics

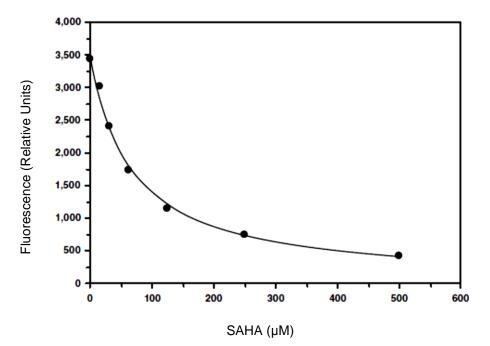
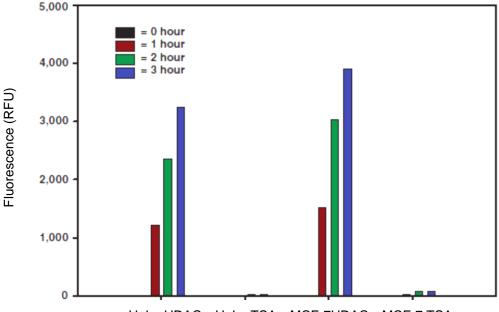




Figure 2. Inhibition of HDAC activity by SAHA. MCF-7 cells were seeded in a 96-well clear bottom black plate at a density of 4 x  $10^4$  cells/well. The next day, cells were treated with different concentrations of SAHA as indicated above. On the third day, cells were processed for the measurement of HDAC activity according to the protocol described in this booklet.





HeLa HDAC HeLa TSA MCF-7HDAC MCF-7 TSA

Figure 3. Effect of substrate incubation time on HDAC activity in HeLa cells and MCF-7 cells. HeLa cells and MCF-7 cells were seeded in a 96-well clear bottom black plate at a density of  $4 \times 10^4$  cells/well. The next day, cells were processed for the measurement of HDAC activity according to the protocol described in this booklet. One hour of substrate incubation generates measurable fluorescence intensity whereas two hours of substrate incubation time doubles the amount of fluorescence activity indicating linearity of the assay over this time period. Addition of TSA almost completely blocks fluorescence, indicating specificity of the HDAC assay.



#### Resources

#### Troubleshooting

| Problem                         | Possible Causes              | Recommended Solutions            |  |
|---------------------------------|------------------------------|----------------------------------|--|
| Erratic values; dispersions of  | A. Poor pipetting/technique  | A. Be careful not to splash the  |  |
| duplicates/triplicates          | B. Bubble in the well(s)     | contents of the wells            |  |
|                                 |                              | B. Carefully tap the side of the |  |
|                                 |                              | plate with your finger to        |  |
|                                 |                              | remove bubbles                   |  |
| Erratic response curve of       | Unequal number of cells in   | Make sure each well contains     |  |
| compound treatments             | each well                    | the same number of cells         |  |
| The fluorometer exhibited 'MAX' | The GAIN setting is too high | Reduce the GAIN and re-read      |  |
| values for the wells            |                              |                                  |  |
| High reading in all wells       | Cell density is too high     | Plate cells more sparsely        |  |

#### **References**

- 1. Grunstein, M. Histone acetylation in chromatin structure and transcription. *Nature* 389, 349-352 (1997).
- 2. Strahl, B.D. and Allis, D. The language of covalent histone modifications. *Nature* 403, 41-45 (2000).
- Cheung, W.L., Briggs, D.B., and Allis, C.D. Acetylation and chromosomal functions. *Curr. Opin. Cell Biol.* 12, 326-333 (2000).
- 4. Kwon, H.J., Kim, M.S., Kim, M.J., *et al.* Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. *Int. J. Cancer* 97, 290-296 (2002).
- 5. Suenaga, M., Soda, H., Oka, M., *et al.* Histone deacetylase inhibitors suppress telomerase reverse tarnscriptase mRNA expression in prostate cancer cells. *Int. J. Cancer* 97, 621-625 (2002).
- Johnstone, R.W. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. *Nat. Rev. Drug Discov.* 1, 287-299 (2002).



## Plate Layout

| 12 |   |   |   |   |   |   |   |   |
|----|---|---|---|---|---|---|---|---|
| 11 |   |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |   |
| 10 |   |   |   |   |   |   |   |   |
| 6  |   |   |   |   |   |   |   |   |
| 8  |   |   |   |   |   |   |   |   |
| 7  |   |   |   |   |   |   |   |   |
| 9  |   |   |   |   |   |   |   |   |
| 5  |   |   |   |   |   |   |   |   |
| 4  |   |   |   |   |   |   |   |   |
| ε  |   |   |   |   |   |   |   |   |
| 2  |   |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |   |
| -  | A | В | U | D | Ш | ш | U | т |