

FK-506 ELISA Kit

Catalog Number KA1417

96 assays

Version: 100

Intended for research use only

Table of Contents

Introduction	3
Intended Use	3
Background	3
Principle of the Assay	3
General Information	4
Materials Supplied	4
Storage Instruction	4
Materials Required but Not Supplied	4
Precautions for Use	4
Assay Protocol	5
Assay Procedure	5
Data Analysis	6
Calculation of Results	6
Performance Characteristics	6
Resources	7
Plate Lavout	7

Introduction

Intended Use

Enzyme Immunoassay for the determination of FK-506 in Sample Extract.

Background

FK-506 (Tacrolimus) is a microlide lactone of fugal origin with potent immunosuppressive properties. FK-506 is used for primary or rescue immunosuppressant in patients after solid organ transplantation. Clinically relevant FK-506 side effects are nephrotoxicity, neurotoxicity, diabetes mellitus and hypertension. Most of these side effects are more closely related to FK-506 blood levels than dosage, therefore therapeutic drug monitoring of FK-506 levels is a prerequisite for therapy.

Principle of the Assay

The enzyme immunoassay for FK-506 ELISA Kit is based on the competition between the FK-506 to be assayed and the FK-506-Horseradish Peroxidase conjugate, for binding to rabbit antibody directed against FK-506, coated onto microwells. The sample containing the FK-506, and the FK-506-Horseradish Peroxidase conjugate, when added to the microtiter wells, compete for binding to a limiting number of antibody sites. After incubation, each well is rinsed in order to remove non-bound components. The bound enzymatic activity is then measured by the addition of a chromogenic substrate. The intensity of the color developed is inversely proportional to the concentration of FK-506 in the sample. The concentration is calculated on the basis of a standard curve.

General Information

Materials Supplied

List of component

Component	Amount	
96-wells microtiter plate: Twelve strips of 8 detachable wells, coated with	96 (12 x 8) wells	
Anti-FK-506 antibody (#S).		
Calibrator: Containing 0, 2, 10 and 50 ng/mL of FK-506.	0.6 mL x 4	
FK-506-Horseradish Peroxidase conjugate (ACC-HRP) (#3).	10.5 mL	
Stabilized Tetramethylbenzidine (TMB) substrate. Ready to use (#5).	10.5 mL	
Wash Buffer (10x PBS-Tween). Dilute 10 fold with distilled or deionized water to	15 ml	
150 mL prior to use (#6).	15 mL	
Stop Solution, 3 N HCl (#7).	10.5 mL	

Storage Instruction

All reagents of the kit are stable, if stored at 2-8 °C, until the expiration date stated on the kit.

Materials Required but Not Supplied

- ✓ Pipettors capable of delivering 25 μL, 50 μL and 100 μL.
- ✓ Microtiter plate reader (wavelength 450 nm).
- ✓ Plate washer or squeezable wash bottle.
- ✓ Timer.
- ✓ Absorbent paper towels.

Precautions for Use

Reagent are for in vitro research use only.

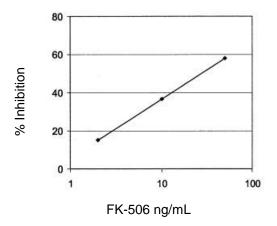
- ✓ Do not mix reagents from different lots.
- ✓ If concentrations of FK-506 in the samples are high (>100 ng/mL), dilute sample such that points fall in the middle range of the standard curve.
- ✓ Do not return unused reagents back into their original bottles.
- ✓ Samples tested should have a pH of 7.0 (± 1.0). Excessive alkaline or acidic conditions may affect the test results.
- ✓ The stop solution contains acid. Avoid contact with skin or eyes. If exposed, flush with water.
- ✓ Dispose of all materials, containers and devices in the appropriate receptacle after use.

Assay Protocol

Assay Procedure

Let the components of the kit equilibrate to room temperature before use.

- Carefully add 25 μL of standard or samples to the bottom of each well. Slightly tap the side of the strip holder to evenly distribute the sample.
- 2. Avoid touching the well with pipette tip and add 100 μL of ACC-HRP conjugate (#3) to each well. Slightly tap the side of the strip holder to properly mix the sample and enzyme conjugate.
- 3. Incubate at room temperature for 30 minutes.
- 4. After incubation, dispose the solution in the wells by inverting and shaking. Wash microtiter wells 3 times with wash buffer to remove the non-bound conjugate. Washing may be done manually as follows: use squeeze bottle to fill wells gently with wash buffer, dumping the wells between each wash by inverting and shaking. After the third wash, tamp holder with washed strips onto a piece of absorbent paper.
- 5. Add 100 μL of TMB substrate (#5) to each well and incubate at room temperature for 15 min. To avoid contamination, place the needed amount of substrate into a test tube and dispense only from the tube itself.
- 6. Add 100 μL of Stop Solution (#7) to each well and tap the strip holder for proper mixing.
- 7. Read absorbance at 450 nm using an ELISA reader.
- √ Simplified Assay Procedure
- 1. Add sample or standard (25 μL).
- 2. Add enzyme conjugate (100 μL). 30 min at RT.
- 3. Wash 3x.
- 4. Add TMB (100 μ L), wait for 15 min. at RT.
- 5. Add Stop Solution (100 µL) and read at 450 nm.


Data Analysis

Calculation of Results

1. Calculation

- (a) Average the absorbance (OD_s) for each standard concentration of FK-506 including 0 ng/mL (OD₀).
- (b) % of Inhibition = $100 (OD_s / OD_0) \times 100$
- 2. Plot values of % of Inhibition, step 1 (b), against their corresponding concentrations on Log₁₀ paper.
- 3. Calculate FK-506 concentration of sample by interpolation and multiply by the sample's dilution factor to obtain the actual quantity of FK-506.

✓ FK-506 Inhibition curve

Performance Characteristics

✓ Cross Reactivity

Except Ascomycin, some other compounds tested at the stated levels are found to give results not greater than a 2.5 ng/mL of FK-506.

Compound	Conc (ng/mL)	% Inhibition	
Ascomycin	10	38%	
Gentamicin	10,000	<10	
G-418	10,000	<10	
Monensin	10,000	<10	
Sulfamethazine	10,000	<10	
Sulfadimethoxine	10,000	<10	
Zearalenone	10,000	<10	
Narasin	10,000	<10	

There is the possibility that other substances and/or factors not listed above may interfere with the test.

Resources

Plate Layout

12								
-								
10								
0								
8								
7								
9								
2								
4								
က								
2								
-								
	4	В	C	Ω	Ш	Ш	Ŋ	エ