Nitric Oxide Synthase Assay Kit

Catalog Number KA1634
96 assays
Version: 06

Intended for research use only

www.abnova.com
Table of Contents

Introduction ... 3

- Intended Use ... 3
- Background ... 3
- Principle of the Assay .. 3

General Information .. 4

- Materials Supplied .. 4
- Storage Instruction .. 4
- Materials Required but Not Supplied ... 4
- Precautions for Use .. 4

Assay Protocol ... 5

- Reagent Preparation ... 5
- Assay Procedure ... 5

Data Analysis ... 7

- Calculation of Results .. 7

Resources ... 8

- References ... 8
- Plate Layout .. 9
Introduction

Intended Use

Application:
- Direct Assays: NOS activity in biological samples.
- Drug Discovery/Pharmacology: effects of drugs on NOS activity.

Features:
- Sensitive and accurate: Detection range 0.25 - 25 U/L in 96-well plate.
- Rapid and reliable: Can be completed in 40 min if reduction of NO\textsubscript{3} to NO\textsubscript{2} is performed at 60°C.

Background

Nitric oxide (NO) is a reactive radical that plays an important role in many key physiological functions. NO, an oxidation product of arginine by nitric oxide synthase (NOS), is involved in host defense and development, activation of regulatory proteins and direct covalent interaction with functional biomolecules. Simple, direct and non-radioactive procedures for measuring NOS are becoming popular in Research and Drug Discovery.

Principle of the Assay

This kit involves two steps: a NOS reaction step during which NO is produced followed by an NO detection step. Since the NO generated by NOS is rapidly oxidized to nitrite and nitrate, the NO production is measured following reduction of nitrate to nitrite using an improved Griess method. The procedure is simple and the time required for sample pretreatment and assay is reduced to as short as 40 min.
General Information

Materials Supplied

List of component

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer</td>
<td>10 mL</td>
</tr>
<tr>
<td>Substrate</td>
<td>600 µL</td>
</tr>
<tr>
<td>GDH</td>
<td>120 µL</td>
</tr>
<tr>
<td>Reagent A</td>
<td>12 mL</td>
</tr>
<tr>
<td>Reagent B</td>
<td>500 µL</td>
</tr>
<tr>
<td>Reagent C</td>
<td>12 mL</td>
</tr>
<tr>
<td>Reagent D (Dried)</td>
<td>2 tubes</td>
</tr>
<tr>
<td>Reagent E</td>
<td>1.5 mL</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>1 mL</td>
</tr>
<tr>
<td>Standard</td>
<td>1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Storage Instruction

✔ Store Assay Buffer, Substrate, Reagent D, Reagent E and GDH at -20°C. Store all other reagents at -20°C to 4°C.
✔ Shelf life of six months after receipt.
✔ Use Reagent D within 1 week after reconstitution.

Materials Required but Not Supplied

✔ Pipetting devices
✔ Eppendorf tubes
✔ Eppendorf centrifuge
✔ Clear, flat bottomed 96 well plates or cuvettes
✔ Plate reader or spectrophotometer
✔ Heat block or hot water bath (optional)

Precautions for Use

Reagents are for research use only. Please refer to Material Safety Data Sheet for detailed information.
Assay Protocol

Reagent Preparation

✓ Prior to assay, equilibrate all components to room temperature.
✓ Reconstitute one tube of Reagent D with 300 µL dH₂O. (If assaying more than 60 wells, reconstitute both tubes of Reagent D)
✓ Store unused reconstituted Reagent D at -20°C and use within 1 week.
✓ Prewarm Assay Buffer to 37°C. Keep GDH on ice.
✓ If precipitates are present in Reagent B, warm at 37°C until redissolved (~10-15 min).

Assay Procedure

✓ General Considerations:
 Antioxidants and nucleophiles (e.g. β-mercaptoethanol, glutathione, dithiothreitol and cysteine) may interfere with this assay. Avoid using these compounds during sample preparation. However, if β-mercaptoethanol or dithiothreitol must be used, an equal concentration needs to be added to the standards.

✓ Sample treatment:
 Tissue or cell samples are homogenized in 1 x PBS (pH 7.4). Centrifuge at 10,000 g or higher at 4°C. Use supernatant for NOS assay.

✓ Standard preparation:
 Prepare 200 µL 500 µM Premix by mixing 100 µL 1.0 mM Standard and 100 µL distilled water. Dilute standards in 1.5 mL centrifuge tubes as described in the Table.

<table>
<thead>
<tr>
<th>No</th>
<th>Premix + H₂O</th>
<th>Nitrite (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 µL + 0 µL</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>30 µL + 20 µL</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>15 µL + 35 µL</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>0 µL + 50 µL</td>
<td>0</td>
</tr>
</tbody>
</table>

✓ NOS Reaction:
 If samples will not require deproteination (i.e. purified NOS), add 20 µL of each sample and standard to separate labeled eppendorf tubes. Each sample requires at least two tubes: one reaction tube and one sample blank tube. Immediately prior to starting the reaction, prepare enough NOS Working Reagent (NOS WR) for all sample reaction tubes and standards by mixing per reaction tube: 65 µL Assay Buffer, 4 µL Substrate, 4 µL Reconstituted Reagent D, 10 µL Reagent E and 1 µL GDH. For the sample blanks, use 8 µL dH₂O instead of the Substrate and Reagent D. Add 80 µL of the appropriate NOS WR to each
tube and incubate at 37°C for 20 min. After 20 min immediately add 200 μL of the NO Detection Reagent (NO DR) (see next section: NO Measurement) to each tube to kill the NOS reaction.

For samples requiring deproteination which include serum, plasma, whole blood, cell culture media containing FBS, tissue or cell lysates, add 25 μL of each sample and standard to separate labeled eppendorf tubes. Each sample requires at least two tubes: one reaction tube and one sample blank tube. Immediately prior to starting the reaction, prepare enough NOS WR for all sample reaction tubes and standards by mixing per reaction tube: 80 μL Assay Buffer, 5 μL Substrate, 5 μL Reconstituted Reagent D, 13 μL Reagent E and 1 μL GDH. For the sample blanks, use 10 μL dH₂O instead of the Substrate and Reagent D. Add 100 μL of the appropriate NOS WR to each tube and incubate at 37°C for 20 min. After 20 min immediately proceed to the deproteination step.

Deproteination:

Add 7 μL ZnSO₄ to each sample and standard tube. Vortex and then add 7 μL NaOH. Vortex again and centrifuge 10 min at 14,000 rpm. Transfer 100 μL of the clear supernatant to a clean tube and proceed to the NO Measurement step.

✓ NO Measurement:

Immediately prior to starting the reaction, prepare enough NO Detection Reagent (NO DR) for all samples and standards by mixing per reaction tube: 100 μL Reagent A, 4 μL Reagent B and 100 μL Reagent C. Add 200 μL of the NO DR to each sample and standard tube and incubate for 5 min at 60°C. (Alternatively, the reaction can be run at 37°C for 60 min or RT for 150 min.) Briefly centrifuge the reaction tubes to pellet any condensation and transfer 250 μL of each reaction to separate wells in a 96 well plate. Read OD at 500-570 nm (peak 540 nm).
Data Analysis

Calculation of Results

1. Subtract blank OD (Std 4) from the standard OD values and plot the OD against standard concentrations. Determine the slope using linear regression fitting. The NOS activity of the Sample is then calculated as:

\[
\text{NOS Activity} = \frac{\text{OD}_{\text{Sample}} - \text{OD}_{\text{Blank}}}{\text{Slope}} \times \frac{1}{t} \quad (\text{U/L})
\]

2. \(\text{OD}_{\text{Sample}} \) and \(\text{OD}_{\text{Blank}} \) are optical density values of the sample and sample blank, respectively. \(t \) is the reaction time (20 min).

3. Unit definition: one unit of NOS catalyzes the production of 1 μmole of nitric oxide per minute under the assay conditions (pH 7.5 and 37°C).
Resources

References

Plate Layout

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>