

COLL2-1NO₂ ELISA Kit

Catalog Number KA2098

96 assays

Version: 03

Intended for research use only

Table of Contents

Introduction	ckgroundaciple of the Assay	
Background	3	
Principle of the Assay	3	
General Information	4	
Materials Supplied	4	
Storage Instruction	4	
Materials Required but Not Supplied	4	
Assay Protocol	5	
Reagent Preparation	5	
Assay Procedure	5	
Data Analysis	7	
Calculation of Results	7	
Performance Characteristics	7	
Resources	9	
References	9	
Plate Layout	10	

Introduction

Background

This immunoassay allows measuring in urine a degradation fragment containing a 9 amino acid sequence (HRGYPGLDG) which is nitrated on its tyrosine residue [HRGY(NO₂)PGLDG]. This degradation fragment, named Coll2-1-NO₂, is derived from type II collagen and is released into the synovial fluid following the action of collagenases and gelatinase B. Subsequent tyrosine nitration results from the action of peroxynitrite (ONOO-), a strong oxidant generated during the inflammatory process.

Principle of the Assay

This assay is a competitive immunoassay utilizing a synthetic peptide pre-coated onto the ELISA plate (PLT) for the quantitation of the corresponding peptide antigen in urine samples. A binding competition between the immobilized peptide and the peptide contained in the standards (STD) or samples takes place upon addition of the antibody Ab-Coll2-1-NO₂ (AB1). After removal of the unbound peptide, a peroxidase-conjugated goat anti-rabbit antibody (AB2) is added into each well to detect and quantify the level of competitive binding. After washing of the unbound detection antibody, the antibody-antigen complex is detected by a chromogenic reaction with 3,3',5,5'-tetramethylbenzidine (TMB). The reaction is stopped by adding acid (STOP) to give a colorimetric endpoint that is subsequently determined spectrophotometrically.

General Information

Materials Supplied

List of component

Component	Amount
PLT: Coll2-1NO ₂ pre-coated Microplate.	96 wells
STD: Coll2-1NO ₂ standard, 4 nM calibrator.	500 μL
CTL1: Positive control, 2 nM (Ready-to-Use).	250 µL
CTL2: Positive control, 0.4 nM (Ready-to-Use).	250 µL
AB1: Coll2-1NO ₂ polyclonal antibody stock solution.	50 μL
AB2: Peroxidase-conjugated goat anti-rabbit antibody stock solution.	150 µL
DIL: Diluent for STD, samples, AB1 and AB2.	35 mL
WASH: Wash buffer to be diluted 10x in H ₂ O	40 mL x 2
TMB: 3,3',5,5'-tetramethylbenzidine (Ready-to-Use).	15 mL
STOP: H ₂ SO ₄ 0.5 M (Ready-to-Use)	15 mL

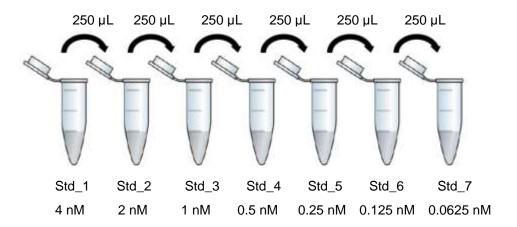
Storage Instruction

All reagents should be stored at 2-8°C for stability until the expiry date printed.

Materials Required but Not Supplied

- ✓ Pipettors to deliver 10 1000 µL
- ✓ Repeating or multichannel pipettor to deliver 10 1000 µL
- √ Pipettes to deliver 10 25 mL
- ✓ Sample tube vortex
- ✓ Microtiter plate shaker (600 rpm)
- ✓ Microtiter plate washer (preferred manual wash steps are allowed)
- ✓ Microtiter plate reader with dual wavelength reading at 450 nm and 650 nm
- ✓ Deionized water and glassware

Note: Ensure that the equipment is calibrated and in proper working order.


Assay Protocol

Reagent Preparation

✓ Standard

Please prepare the standard following the table below:

	Table 1: Coll2-1-NO₂ Working Standards Dilution					
Standard	Concentration	Volume Stock	Volume Buffer	Dilution		
Std_1	4 nM	500 μL	STD (Ready-to-Use)			
Std_2	2 nM	250 μL	250 μL	1:2		
Std_3	1 nM	250 μL	250 μL	1:2		
Std_4	0.5 nM	250 μL	250 μL	1:2		
Std_5	0.25 nM	250 μL	250 μL	1:2		
Std_6	0.125 nM	250 μL	L 250 μL			
Std_7	0.0625 nM	250 μL	250 μL	1:2		

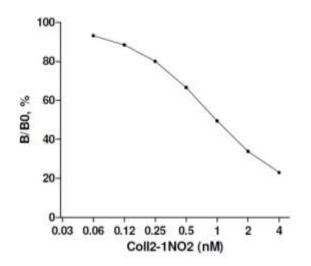
Assay Procedure

- 1. Place wash buffer (WASH) 10 minutes at 37°C to ensure total solubilization then mix the bottle gently. Bring all other reagents to room temperature.
- 2. Prepare at least 600 mL of washing buffer (1x) per plate (e.g. for 600 mL of washing buffer dilute 60 mL of stock WASH to 600 mL with water).
- 3. Wash the PLT 4 times by adding 350 µL of washing buffer (1x) per well. After the last washing step, tap firmly the plate several times over clean absorbent paper until any residual liquid is removed. Do not leave the plate to dry for more than 5 minutes.
- 4. Briefly vortex the STD, CTL1 and CTL2 then collect any liquid by centrifugation.
- Prepare 7 standards by dilution in Diluent (DIL) from the stock standard at 4 nM as described above.
 Prepare 6 tubes containing 250 μL DIL and produce the following dilution series: 4 nM (undiluted), 2 nM,
 1 nM, 0.5 nM, 0.25 nM, 0.125 nM and 0.0625 nM. Ensure that each tube is thoroughly mixed before the

- next transfer.
- Distribute at least 50 μL of standards, controls, and samples at least in duplicate into the plate PLT.
 Prepare B0 (zero calibrator) by adding 50 μL of DIL in duplicate. Typical plate disposition of standards (Std, B0), Unknown samples (Unk) and Controls (CTL) please the plate layout.
- 7. Prepare the AB1 working solution with DIL (e.g. for one plate, add 30 μL of AB1 stock solution to 12 mL of DIL).
- 8. Add 100 µL of AB1 working solution into each well.
- 9. Cover the plate with sealing tape and incubate on plate shaker (600 rpm) for 1 hour at room temperature.
- 10. Wash the plate 4 times with washing buffer (1x) as described in step 3.
- 11. Prepare the AB2 working solution with DIL (e.g. for one plate, add 120 μL of AB2 stock solution to 12 mL of DIL).
- 12. Add 100 µL of AB2 working solution into each well.
- 13. Cover the plate with sealing tape and incubate on plate shaker (600 rpm) for 1 hour at room temperature.
- 14. Wash the plate 4 times with washing buffer (1x) as described in step 3.
- 15. Add 100 µL of the TMB into each well.
- 16. Cover the plate with sealing tape and incubate on plate shaker (600 rpm) for 15 minutes at room temperature.
- 17. Add 100 µL of STOP into each well.
- 18. Measure the absorbance at 450 nm with 650 nm as reference within 20 min. Avoid light exposure until the reading.

Note:

- 1. Before modifying the recommended protocol for any reason, users are encouraged to contact our technical services to achieve the desired goals.
- 2. All standards, controls & samples should be tested at least in duplicate
- 3. Plate reader should be turned on 30 minutes before reading to allow pre-heating.
- 4. Plates should be read within 20 minutes since color will fade away over time.



Data Analysis

Calculation of Results

- Calculate %B/B0 where B is the coated antigen bound in the presence of free antigen and B0 is the
 coated antigen bound in the zero calibrator. Plot %B/B0 on the y-axis versus log concentration on the
 axis. Analyze the standard curve using 4-Parameter Logistic regression with appropriate curve-fitting
 software.
- 2. Determine the Coll2-1NO₂ concentration of each urine sample by interpolation onto the regression model. Note that a high B/B0 ratio corresponds to a low concentration of Coll2-1NO₂ in the analyzed sample.

√ Typical Standard Curve

Standard #	Concentration		
Std_1	4 nM		
Std_2	2 nM		
Std_3	1 nM		
Std_4	0.5 nM		
Std_5	0.25 nM		
Std_6	0.125 nM		
Std_7	0.0625 nM		

Figure 1: Typical Standard Curve for COLL2-1NO₂ ELISA Kit.

✓ QUALITY CONTROL

- 1. Precision on absorbance duplicates should yield %coefficients of variation ≤ 15%.
- 2. The %B0 of 4 nM Std_1 (CAL) should be less than or equal to 40%
- 3. CTL1 and CTL2 Controls should be 1.3-2.7 nM and 0.25-0.55 nM, respectively.
- 4. Acceptable sample values should fall within the working range of the standard curve. Any sample higher than 4 nM should be diluted further and re-assessed. Any sample lower than 0.0625 nM should be re-assessed or discarded

Performance Characteristics

✓ Specificity

No cross-reactivity is observed between $Coll2-1NO_2$ and human nitrated type I and II collagens, human native type I and II collagens, human heat denatured nitrated type I and II collagens, nitrated BSA, native BSA and NO_2 -tyr.

✓ Matrix interference

Interference of the following urine constituents is found not to affect the assay: lipids (up to 5 g/L) and bilirubin (up to 250 μ M).

✓ Detection limit

The limit of detection of this assay is 0.06 nM.

✓ Working range

The range of quantification of this assay is 0.06 nM-4 nM.

✓ Precision

The intra-/inter-assay % coefficients of variation of this assay are ≤ 20%.

✓ Dilutional linearity & Spiking recovery

Dilutional linearity is of $100 \pm 20\%$ in a sample dilution range from 2 to 4-fold. Spike recovery is of $100 \pm 20\%$ in urine samples.

Resources

References

- New serum biochemical markers (Coll 2-1 and Coll 2-1 NO₂) for studying oxidative related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. M. Deberg, A. Labasse, S. Christgau, P. Cloos, D.B. Henriksen, J.P. Chapelle, B. Zegels, Y. Reginster and Y. Henrotin. Osteoarthritis and Cartilage, 13: 258-265 (2005).
- 2. Type II collagen peptides for measuring cartilage degradation. Y. Henrotin, M. Deberg, J.E. Dubuc, E. Quettier, S. Christgau, J.Y.Reginster. Biorheology 41: 543-547 (2004).

Plate Layout

12	Unk_33	Unk_34	Unk_35	Unk_36	Unk_37	Unk_38	CTL1	CTL2
11	Unk_33	Unk_34	Unk_35	Unk_36	Unk_37	Unk_38	CTL1	CTL2
10	Unk_25	Unk_26	Unk_27	Unk_28	Unk_29	Unk_30	Unk_31	Unk_32
6	Unk_25	Unk_26	Unk_27	Unk_28	Unk_29	Unk_30	Unk_31	Unk_32
8	Unk_17	Unk_18	Unk_19	Unk_20	Unk_21	Unk_22	Unk_23	Unk_24
7	Unk_17	Unk_18	Unk_19	Unk_20	Unk_21	Unk_22	Unk_23	Unk_24
9	Unk_9	Unk_10	Unk_11	Unk_12	Unk_13	Unk_14	Unk_15	Unk_16
5	Unk_9	Unk_10	Unk_11	Unk_12	Unk_13	Unk_14	Unk_15	Unk_16
4	Unk_1	Unk_2	Unk_3	Unk_4	Unk_5	Unk_6	Unk_7	Unk_8
3	Unk_1	Unk_2	Unk_3	Unk_4	Unk_5	Unk_6	Unk_7	Unk_8
2	Std_1	Std_2	Std_3	Std_4	Std_5	Std_6	Std_7	BO
1	Std_1	Std_2	Std_3	Std_4	Std_5	Std_6	Std_7	BO
	A	В	0	Q	Ш	L	9	エ