Western Blot Protocol Specific for HIF-1alpha Antibody (NB100-105)

General considerations for Western blot analysis of HIF-alpha proteins

1. HIF-1alpha is largely undetectable in cells or tissues grown under normoxic conditions. It is stabilized only at O_2 concentrations below 5% or with treatment using certain agents (CoCl_2, DFO, etc.), therefore proper sample preparation is critical.

2. Since stabilized HIF-1alpha translocates to the nucleus, using nuclear extracts is recommended for western blot analysis.

3. Positive and negative controls should always be run side by side in a Western blot to accurately identify the protein band upregulated in the hypoxic sample.

 (HeLa Hypoxic/Normoxic Cell Lysate: NBP2-36452; HeLa Hypoxic (CoCl_2)/Normoxic Lysate: NBP2-36450)

4. To accurately compare treated and untreated samples and to ensure equal loading of samples the expression of a loading control should be evaluated.

 (alpha Tubulin Antibody (DM1A): NB100-690)

5. Unprocessed HIF-1alpha is ~95 kDa, while the fully post-translationally modified form is ~116 kDa, or larger.

6. HIF-1alpha may form a heterodimer with HIF-1beta (Duan, et al. Circulation. 2005; 111:2227-2232.). However, this is not typically seeing under denaturing conditions.

7. Depending on the sample and treatment, a single band or a doublet may be present.

Western Blot Protocol

Materials

1x Laemmli Sample Buffer: 2% SDS, 2.5% 2-mercaptoethanol (βME), 25% glycerol, 0.01% bromophenol blue, 62.5 mM Tris HC, pH 6.8

1X Running Buffer: 25 mM Tris-base, 192 mM glycine, 0.1% SDS. Adjust to pH 8.3

1X Transfer buffer (wet): 25 mM Tris-base, 192 mM glycine, 20% methanol.

1X TBS

TBST (1X TBS with 0.1% Tween-20)

Blocking solution: TBST with 5% non-fat dry milk
Methods

Whole-Cell Lysates

1. Load samples of treated and untreated cell lysates, 10-40 µg of total protein per lane on a 7.5% polyacrylamide gel (SDS-PAGE). Alternatively, gradient gels can be used for better resolution of lower molecular weight loading controls.
2. Resolve proteins by electrophoresis as required.
3. Transfer proteins to 0.45 µm PVDF membrane for 1 hour at 100V or equivalent.
4. Stain the blot using Ponceau S for 1-2 minutes to confirm efficient protein transfer onto the membrane.
5. Rinse the blot in distilled water to remove excess stain and mark the lanes and locations of molecular weight markers using a pencil.
6. Block the membrane using 5% non-fat dry milk in TBS for 1 hour.
7. Dilute the mouse anti-HIF-1 alpha primary antibody (NB100-105) in blocking solution (1-2 µg/ml) and incubate 1 hour at room temperature or overnight at 4°C.
8. Wash the membrane 3X 10 min in TBST.
9. Incubate in the appropriate diluted mouse-IgG HRP-conjugated secondary antibody in blocking solution (as per manufacturer’s instructions) for 1 hour at room temperature.
10. Wash the membrane 3X 10 min in TBST.
11. Apply the detection reagent of choice in accordance with the manufacturer’s instructions (e.g., ECL, ECL Plus).
12. Image the blot.
Figure Legend:
Naive CD4 T cells from WT, VHL-deficient (Vhl KO), or HIF-1a-deficient (Hif1a KO) mice were differentiated under IL-22-skewing conditions for a total of 60 h. Some cells remained at normoxia for the duration of the culture (N); others were at normoxia for 35 h and then hypoxia (1% O2) for 24 h (H). At 60 h, nuclear extracts were harvested, and HIF-1a and lamin B1 levels were analyzed by Western blot. This image was submitted via customer Review. (Mouse, WB)