

ELISA PRODUCT INFORMATION & MANUAL

Human VCAM-1/CD106 ELISA Kit (Colorimetric) NBP1-91177

Enzyme-linked Immunosorbent Assay for quantitative detection. For research use only.

Not for diagnostic or therapeutic procedures.

Human VCAM-1/CD106 ELISA Kit

Enzyme-linked Immunosorbent Assay for quantitative detection of human VCAM-1/CD106

Catalog Number NBP1-91177

WARNING! Read the Safety Data Sheets (SDSs) and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves. Safety Data Sheets (SDSs) are available from Technical Support.

Product description

The Human VCAM-1/CD106 ELISA Kit is an enzyme-linked immunosorbent assay for the quantitative detection of human VCAM-1/CD106.

Summary

The vascular cell adhesion molecule-1 (VCAM-1) or CD106 is a member of the immunoglobulin gene superfamily. The initial molecular cloning of VCAM-1 reported six extracellular Ig-like domains (6D VCAM-1).

This 6D VCAM-1 arises due to alternative splicing from a sevendomain VCAM-1 (7D VCAM-1). 7D VCAM-1 is the dominant form expressed by cultured human endothelial cells. Domains 1 through 3 are highly homologous to domains 4 through 6, suggesting that they arose by gene duplication. The cDNA of 7D VCAM-1 predicts a core protein of approximately 81 kDa with seven potential N-linked glycosylation sites. Upon complete glycosylation the mature protein has a molecular weight of approximately 102 kDa. This observation is in general agreement with immunoprecipitation studies that show a protein of approximately 110 kDa on cytokine-activated endothelium.

Murine and rat VCAM-1 have been cloned. In contrast to ICAM-1, VCAM-1 appears to have been highly conserved through evolution. Both rat and mouse VCAM-1 are highly homologous at the protein level to the human VCAM-1 (77% and 76%, respectively). VCAM-1 supports the adhesion of lymphocytes, monocytes, natural killer cells, eosinophils, and basophils through its interaction with leukocyte very late antigen-4 (VLA-4). VCAM-1/VLA-4 interaction mediates firm adherence of circulating non-neutrophilic leukocytes to endothelium. VCAM-1 also participates in leukocyte adhesion outside of the vasculature, mediating precursor lymphocyte adhesion to bone marrow stromal cells and B cell binding to lymph node follicular dendritic cells.

VCAM-1 is not constitutively expressed on endothelium, but can be up-regulated in vitro in response to LPS, TNF α , and IL-1, as well as to interferon γ and IL-4.

VCAM-1 is also present on tissue macrophages, dendritic cells, bone marrow fibroblasts, myoblasts and myotubes.

For literature update refer to our website.

Principles of the test

An anti-human VCAM-1/CD106 coating antibody is adsorbed onto microwells.

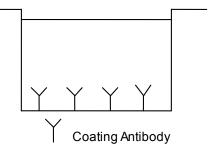


Fig. 1 Coated microwell

Human VCAM-1 present in the sample or standard binds to antibodies adsorbed to the microwells. A conjugate mixture (biotinconjugated anti-human VCAM-1/CD106 antibody and Streptavidin-HRP) is added.

Biotin-conjugated anti-human VCAM-1/CD106 antibody binds to human VCAM-1/CD106 captured by the first antibody.

Streptavidin-HRP binds to the biotin-conjugated anti-human VCAM-1/CD106 antibody.

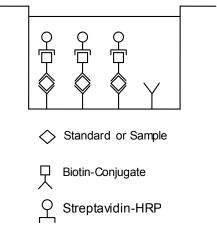


Fig. 2 First incubation

Following incubation unbound Streptavidin-HRP is removed during a wash step, and substrate solution reactive with HRP is added to the wells.

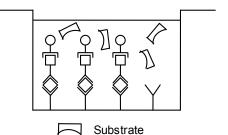


Fig. 3 Second incubation

A colored product is formed in proportion to the amount of human VCAM-1/CD106 present in the sample or standard. The reaction is terminated by addition of acid and absorbance is measured at $450~\rm nm$. A standard

curve is prepared from 6 human VCAM-1/CD106 standard dilutions and $\underline{\text{human}}$ VCAM-1/CD106 sample $\underline{\text{concen}}$ tration determined.

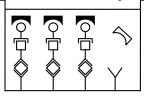


Fig. 4 Stop reaction

Reacted Substrate

Reagents provided

Reagents for human VCAM-1/CD106 ELISA NBP1-91177 [96 tests]

1 aluminum pouch with a Microwell Plate (12 strips with 8 wells each) coated with monoclonal antibody to human VCAM-1/CD106

1 vial (100 $\mu L)$ Conjugate Mixture containing Biotin-Conjugate antihuman VCAM-1/CD106 monoclonal antibody mixed with Streptavidin-HRP

2 vials human VCAM-1/CD106 Standard lyophilized, 200 ng/mL upon reconstitution

1 vial Control high, lyophilized

1 vial Control low, lyophilized

1 vial (5 mL) Assay Buffer Concentrate 20x (PBS with 1% Tween 20, 10% BSA)

1 bottle (50 mL) Wash Buffer Concentrate 20x (PBS with 1% Tween 20)

1 vial (15 mL) Substrate Solution (tetramethyl-benzidine)

1 vial (15 mL) Stop Solution (1M Phosphoric acid)

2 Adhesive Films

Reagents for human VCAM-1/CD106 ELISA NBP1-91177 [10x96 tests]

10 aluminum pouches with a Microwell Plate (12 strips with 8 wells each) coated with monoclonal antibody to human VCAM-1/CD106

 $10~{\rm vials}~(100~{\rm \mu L})$ Conjugate Mixture containing Biotin-Conjugate antihuman VCAM-1/CD106 monoclonal antibody mixed with Streptavidin-HRP

10 vials human VCAM-1/CD106 Standard lyophilized, 200 ng/mL upon reconstitution

10 vials Control high, lyophilized

10 vials Control low, lyophilized

5 vials (5 mL) Assay Buffer Concentrate 20x (PBS with 1% Tween 20, 10% BSA)

3 bottles (50 mL) Wash Buffer Concentrate 20x (PBS with 1% Tween 20) 10 vials (15 mL) Substrate Solution (tetramethyl-benzidine)

1 vial (100 mL) Stop Solution (1M Phosphoric acid)

10 Adhesive Films

Storage instructions - ELISA kit

Store kit reagents between 2° and 8°C except controls. Store lyophilized controls at -20°C. Immediately after use remaining reagents should be returned to cold storage (2° to 8°C), controls to -20°C, respectively. Expiry of the kit and reagents is stated on labels.

Expiry of the kit components can only be guaranteed if the components are stored properly, and if, in case of repeated use of one component, this reagent is not contaminated by the first handling.

Sample collection and storage instructions

Cell culture supernatant, serum, plasma (EDTA, citrate, heparin) and amniotic fluid were tested with this assay. Other biological samples might be suitable for use in the assay.

Remove serum or plasma from the clot or cells as soon as possible after clotting and separation. Samples containing a visible precipitate must be clari ied prior to use in the assay. Do not use grossly hemolyzed or lipemic samples.

Samples should be aliquoted and must be stored frozen at -20°C to avoid loss of bioactive human VCAM-1/CD106. If samples are to be run within 24 hours, they may be stored at 2–8°C (refer to "Sample stability" on page 6). Avoid repeated freeze-thaw cycles.

Prior to assay, the frozen sample should be brought to room temperature slowly and mixed gently.

Materials required but not provided

- 5 mL and 10 mL graduated pipettes
- 5 μL to 1000 μL adjustable single channel micropipettes with disposable tips
- $50~\mu L$ to $300~\mu L$ adjustable multichannel micropipette with disposable tips
- Multichannel micropipette reservoir
- Beakers, flasks, cylinders necessary for preparation of reagents
- Device for delivery of wash solution (multichannel wash bottle or automatic wash system)
- Microwell strip reader capable of reading at 450 nm (620 nm as optional reference wave length)
- · Glass-distilled or deionized water
- Statistical calculator with program to perform regression analysis

Precautions for use

- All chemicals should be considered as potentially hazardous. We
 therefore recommend that this product is handled only by those
 persons who have been trained in laboratory techniques and that it
 is used in accordance with the principles of good laboratory
 practice. Wear suitable protective clothing such as laboratory
 overalls, safety glasses, and gloves. Care should be taken to avoid
 contact with skin or eyes. In the case of contact with skin or eyes
 wash immediately with water. See material safety data sheet(s)
 and/or safety statement(s) for specific advice.
- Reagents are intended for research use only and are not for use in diagnostic or therapeutic procedures.
- Do not mix or substitute reagents with those from other lots or other sources.
- Do not use kit reagents beyond expiration date on label.
- Do not expose kit reagents to strong light during storage or incubation.
- Do not pipet by mouth.
- Do not eat or smoke in areas where kit reagents or samples are handled.
- Avoid contact of skin or mucous membranes with kit reagents or samples.
- Rubber or disposable latex gloves should be worn while handling kit reagents or samples.
- Avoid contact of substrate solution with oxidizing agents and metal.
- Avoid splashing or generation of aerosols.
- To avoid microbial contamination or cross-contamination of reagents or samples that may invalidate the test, use disposable pipette tips and/or pipettes.
- Use clean, dedicated reagent trays for dispensing the conjugate and substrate reagent.
- Exposure to acid inactivates the conjugate.
- Glass-distilled water or deionized water must be used for reagent preparation.
- Substrate solution must be at room temperature prior to use.
- Decontaminate and dispose samples and all potentially contaminated materials as if they could contain infectious agents.
 The preferred method of decontamination is autoclaving for a minimum of 1 hour at 121.5°C.
- Liquid wastes not containing acid and neutralized waste may be mixed with sodium hypochlorite in volumes such that the final mixture contains 1.0% sodium hypochlorite. Allow 30 minutes for effective decontamination. Liquid waste containing acid must be neutralized prior to the addition of sodium hypochlorite.

Preparation of reagents

- Buffer concentrates should be brought to room temperature and should be diluted before starting the test procedure.
- 2. If crystals have formed in the Buffer Concentrates, warm them gently until they have completely dissolved.

Wash buffer (1x)

- Pour entire contents (50 mL) of the Wash Buffer Concentrate (20x) into a clean 1000 mL graduated cylinder. Bring to final volume of 1000 mL with glass-distilled or deionized water.
- 2. Mix gently to avoid foaming.
- **3.** Transfer to a clean wash bottle and store at 2° to 25°C. Please note that Wash Buffer (1x) is stable for 30 days.
- **4.** Wash Buffer (1x) may also be prepared as needed according to the following table:

Number of Strips	Wash Buffer Concentrate (20x) (mL)	Distilled Water (mL)
1 - 6	25	475
1 - 12	50	950

Assay buffer (1x)

- 1. Pour the entire contents (5 mL) of the Assay Buffer Concentrate (20x) into a clean 100 mL graduated cylinder. Bring to final volume of 100 mL with distilled water. Mix gently to avoid foaming.
- 2. Store at 2° to 8°C. Please note that the Assay Buffer (1x) is stable for 30 days.
- Assay Buffer (1x) may also be prepared as needed according to the following table:

Number of Strips	Assay Buffer Concentrate (20x) (mL)	Distilled Water (mL)
1 - 6	2.5	47.5
1 - 12	5.0	95.0

Conjugate mixture

Note: The Conjugate Mixture should be used within 30 minutes after dilution.

- 1. The Conjugate Mixture (Biotin-Conjugate mixed with Streptavidin-HRP) must be diluted 1:100 with Assay Buffer (1x) just prior to use in a clean plastic test tube.
- Conjugate Mixture may be prepared as needed according to the following table:

Number of Strips	Conjugate Mixture (mL)	Assay Buffer (1x) (mL)
1 - 6	0.03	2.97
1 - 12	0.06	5.94

Human VCAM-1/CD106 standard

- Reconstitute human VCAM-1/CD106 standard by addition of distilled water. Reconstitution volume is stated on the label of the standard vial. Swirl or mix gently to insure complete and homogeneous solubilization (concentration of reconstituted standard = 200 ng/mL).
- 2. Allow the standard to reconstitute for 10-30 minutes. Mix well prior to making dilutions.
- After usage remaining standard cannot be stored and has to be discarded.
- Standard dilutions can be prepared directly on the microwell plate (see "Test protocol" on page 3) or alternatively in tubes (see "External standard dilution" on page 3).

External standard dilution

- 1. Label 6 tubes, one for each standard point: S1, S2, S3, S4, S5, S6.
- 2. Then prepare 1:2 serial dilutions for the standard curve as follows: Pipette 225 μ L of Assay Buffer (1x) into each tube.
- 3. Pipette 225 μ L of reconstituted standard (concentration = 200 ng/mL) into the first tube, labeled S1, and mix (concentration of standard 1 = 100 ng/mL).
- Pipette 225 µL of this dilution into the second tube, labeled S2, and mix thoroughly before the next transfer.
- 5. Repeat serial dilutions 4 more times thus creating the points of the standard curve (see Figure 5).

Assay Buffer (1x) serves as blank.

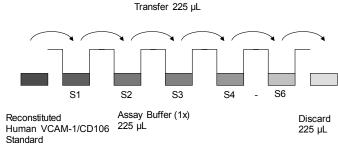


Fig. 5 Dilute standards - tubes

Controls

Reconstitute by adding 150 μL distilled water to lyophilized controls (10-30 minutes). Swirl or mix gently to ensure complete and homogeneous solubilization. Further treat the controls like your samples in the assay. For control range please refer to certificate of analysis or vial label. Store reconstituted controls aliquoted at -20°C. Avoid repeated freeze and thaw cycles.

Test protocol

- 1. Predilute your samples before starting with the test procedure. Dilute serum and plasma samples 1:50 with Assay Buffer (1x) according to the following scheme:
 - 10μ L sample + 490 μL Assay Buffer (1x)
- 2. Determine the number of microwell strips required to test the desired number of samples plus appropriate number of wells needed for running blanks and standards. Each sample, standard, blank and optional control samples should be assayed in duplicate. Remove extra microwell strips from holder and store in foil bag with the desiccant provided at 2°-8°C sealed tightly.
- 3. Wash the microwell strips twice with approximately $400~\mu$ L Wash Buffer per well with thorough aspiration of microwell contents between washes. Allow the Wash Buffer to sit in the wells for about 10-15 seconds before aspiration. Take care not to scratch the surface of the microwells.

After the last wash step, empty wells and tap microwell strips on absorbent pad or paper towel to remove excess Wash Buffer. Use the microwell strips immediately after washing. Alternatively microwell strips can be placed upside down on a wet absorbent paper for not longer than 15 minutes. Do not allow wells to dry.

4. Standard dilution on the microwell plate (Alternatively the standard dilution can be prepared in tubes - see "External standard dilution" on page 3):

Add 100 μ L of Assay Buffer (1x) in duplicate to all standard wells. Pipette 100 μ L of prepared standard (see "Human VCAM-1/CD106 standard" on page 3, concentration = 200.0 ng/mL) in duplicate into well A1 and A2 (see Table 1). Mix the contents of wells A1 and A2 by repeated aspiration and ejection (concentration of standard 1, S1 =100.0 ng/mL), and transfer 100 μ L to wells B1 and B2, respectively (see Figure 6). Take care not to scratch the inner surface of the microwells. Continue this procedure 4 times, creating two rows of human VCAM-1/CD106 standard dilutions ranging from 100.0 to 3.1 ng/mL. Discard 100 μ L of the contents from the last microwells (F1, F2) used.

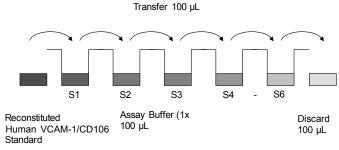


Fig. 6 Dilute standards - microwell plate

Table 1 Example of the arrangement of blanks, standards and samples in the microwell strips.

	1	2	3	4
А	Standard 100.0 ng/mL	Standard 1 100.0 ng/mL	Sample 2	Sample 2
В	Standard 2 50.0 ng/mL	Standard 2 50.0 ng/mL	Sample 3	Sample 3
С	Standard 3 25.0 ng/mL	Standard 3 25.0 ng/mL	Sample 4	Sample 4
D	Standard 4 12.5 ng/mL	Standard 4 12.5 ng/mL	Sample 5	Sample 5
Е	Standard 5 6.3 ng/mL	Standard 5 6.3 ng/mL	Sample 6	Sample 6
F	Standard 6 3.1 ng/mL	Standard 6 3.1 ng/mL	Sample 7	Sample 7
G	Blank	Blank	Sample 8	Sample 8
Н	Sample 1	Sample 1	Sample 9	Sample 9

In case of an external standard dilution (see "External standard dilution" on page 3), pipette 100 μL of these standard dilutions (S1 – S6) in the standard wells according to Table 1.

- 5. Add 100 μL of Assay Buffer (1x) in duplicate to the blank wells.
- 6. Add 100 μL of each prediluted sample in duplicate to the sample wells.
- Prepare Conjugate Mixture (refer to "Conjugate mixture" on page 3.)
- 8. Add 50 μL of diluted Conjugate Mixture to all wells, including the blank wells.
- 9. Cover with an adhesive film and incubate at room temperature (18 to 25°C) for 2 hours, if available on a microplate shaker.
- 10. Remove adhesive film and empty wells. Wash microwell strips 3 times according to point 3. of the test protocol. Proceed immediately to the next step.
- 11. Pipette 100 µL of TMB Substrate Solution to all wells.

- 12. Incubate the microwell strips at room temperature (18° to 25°C) for about 10 minutes. Avoid direct exposure to intense light.
 - The color development on the plate should be monitored and the substrate reaction stopped (see next point of this protocol) before positive wells are no longer properly recordable. Determination of the ideal time period for color development has to be done individually for each assay.
 - It is recommended to add the stop solution when the highest standard has developed a dark blue color. Alternatively the color development can be monitored by the ELISA reader at 620 nm. The substrate reaction should be stopped as soon as Standard 1 has reached an OD of 0.9-0.95.
- 13. Stop the enzyme reaction by quickly pipetting 100 μ L of Stop Solution into each well. It is important that the Stop Solution is spread quickly and uniformly throughout the microwells to completely inactivate the enzyme. Results must be read immediately after the Stop Solution is added or within one hour if the microwell strips are stored at 2 8°C in the dark.
- 14. Read absorbance of each microwell on a spectro-photometer using 450 nm as the primary wave length (optionally 620 nm as the reference wave length; 610 nm to 650 nm is acceptable). Blank the plate reader according to the manufacturer's instructions by using the blank wells. Determine the absorbance of both the samples and the standards.

Note: In case of incubation without shaking the obtained O.D. values may be lower than indicated below. Nevertheless the results are still valid.

Calculation of results

- Calculate the average absorbance values for each set of duplicate standards and samples. Duplicates should be within 20 percent of the mean value.
- Create a standard curve by plotting the mean absorbance for each standard concentration on the ordinate against the human VCAM-1/CD106 concentration on the abscissa. Draw a best it curve through the points of the graph (a 5-parameter curve it is recommended).
- To determine the concentration of circulating human VCAM-1/ CD106 for each sample, first find the mean absorbance value on the ordinate and extend a horizontal line to the standard curve. At the point of intersection, extend a vertical line to the abscissa and read the corresponding human VCAM-1/CD106 concentration.
- If instructions in this protocol have been followed, serum and plasma samples have been diluted 1:50 (10 μ L sample + 490 μ L Assay Buffer (1x)) and the concentration read from the standard curve must be multiplied by the dilution factor (x 50).
- Calculation of samples with a concentration exceeding standard 1
 may result in incorrect, low human VCAM-1/CD106 levels. Such
 samples require further external predilution according to
 expected human VCAM-1/CD106 values with Assay Buffer (1x) in
 order to precisely quantitate the actual human VCAM-1/CD106
 level
- It is suggested that each testing facility establishes a control sample of known human VCAM-1/CD106 concentration and runs this additional control with each assay. If the values obtained are not within the expected range of the control, the assay results may be invalid.

 A representative standard curve is shown in Figure 7. This curve cannot be used to derive test results. Each laboratory must prepare a standard curve for each group of microwell strips assayed.

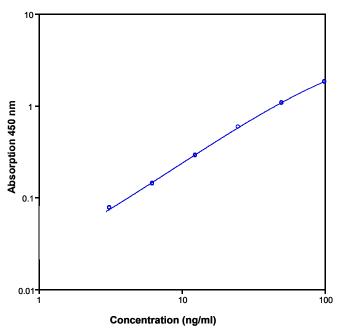


Fig. 7 Representative standard curve for human VCAM-1/CD106 ELISA. HumanVCAM-1 was diluted in serial 2-fold steps in Assay Buffer (1x). Do not use this standard curve to derive test results. A standard curve must be run for each group of microwell strips assayed.

Table 2 Typical data using the human VCAM-1/CD106 ELISA Measuring wavelength: 450 nm Reference wavelength: 620 nm

Standard	Human VCAM-1/ CD106 Conc. (ng/ml)	0.D. at 450 nm	Mean O.D. at 450 nm	C.V. (%)
1	100.0	1.808 1.837	1.823	0.8
2	50.0	1.080 1.058	1.069	1.0
3	25.0	0.582 0.583	0.583	0.1
4	12.5	0.284 0.288	0.286	0.7
5	6.3	0.144 0.141	0.142	1.1
6	3.1	0.077 0.078	0.078	0.6
Blank	0	0.032 0.028	0.030	6.7

The OD values of the standard curve may vary according to the conditions of assay performance (e.g. operator, pipetting technique, washing technique or temperature effects). Furthermore shelf life of the kit may affect enzymatic activity and thus color intensity. Values measured are still valid.

Limitations

- Since exact conditions may vary from assay to assay, a standard curve must be established for every run.
- Bacterial or fungal contamination of either screen samples or reagents or cross-contamination between reagents may cause erroneous results.

- Disposable pipette tips, flasks or glassware are preferred, reusable glassware must be washed and thoroughly rinsed of all detergents before use.
- Improper or insufficient washing at any stage of the procedure will
 result in either false positive or false negative results. Empty wells
 completely before dispensing fresh wash solution, fill with Wash
 Buffer as indicated for each wash cycle and do not allow wells to
 sit uncovered or dry for extended periods.
- The use of radioimmunotherapy has significantly increased the number of patients with human anti-mouse IgG antibodies (HAMA). HAMA may interfere with assays utilizing murine monoclonal antibodies leading to both false positive and false negative results. Serum samples containing antibodies to murine immunoglobulins can still be analyzed in such assays when murine immunoglobulins (serum, ascitic fluid, or monoclonal antibodies of irrelevant specificity) are added to the sample.

Performance characteristics

Sensitivity

The limit of detection of human VCAM-1/CD106 de ined as the analyte concentration resulting in an absorbance signi icantly higher than that of the dilution medium (mean plus 2 standard deviations) was determined to be 0.6 ng/mL (mean of 6 independent assays).

Reproducibility

Intra-assay

Reproducibility within the assay was evaluated in 3 independent experiments. Each assay was carried out with 6 replicates of 8 serum samples containing different concentrations of human VCAM-1/CD106. 2 standard curves were run on each plate. Data below show the mean human VCAM-1/CD106 concentration and the coefficient of variation for each sample (see Table 3). The calculated overall intraassay coefficient of variation was 3.1%.

Table 3 The mean human VCAM-1/CD106 concentration and the coefficient of variation for each sample

Sample	Experiment	Mean Human VCAM-1/CD106 Concentration (ng/mL)	Coefficient of Variation (%)
	1	1550.5	1.9
1	2	1429.1	1.7
	3	1397.5	0.3
	1	689.2	1.4
2	2	698.3	2.6
	3	660.6	3.0
	1	781.8	3.2
3	2	808.7	1.5
	3	732.5	1.3
	1	543.2	6.1
4	2	575.5	2.4
	3	500.3	2.7
	1	395.4	3.4
5	2	461.1	7.4
	3	430.4	8.3
	1	435.3	1.4
6	2	458.4	3.3
	3	431.5	2.5
	1	384.7	6.0
7	2	412.1	2.0
	3	368.1	0.6
	1	460.0	3.2
8	2	498.6	2.8
	3	458.8	4.5

Inter-assay

Assay to assay reproducibility within one laboratory was evaluated in 3 independent experiments. Each assay was carried out with 6

replicates of 8 serum samples containing different concentrations of human VCAM-1/CD106. 2 standard curves were run on each plate. Data below show the mean human VCAM-1/CD106 concentration and the coefficient of variation calculated on 18 determinations of each sample (see Table 4). The calculated overall inter-assay coefficient of variation was 5.2%.

Table 4 The mean human VCAM-1/CD106 concentration and the coefficient of variation of each sample

Sample	Mean Human VCAM-1/ CD106 Concentration (ng/mL)	Coefficient of Variation (%)
1	1459.0	5.5
2	682.7	2.9
3	774.3	5.0
4	539.7	7.0
5	428.9	7.7
6	441.7	3.3
7	388.3	5.7
8	472.5	4.8

Spike recovery

The spike recovery was evaluated by spiking 7 levels of human VCAM-1/CD106 into pooled normal serum samples. Recoveries were determined in 3 independent experiments with 6 replicates each. The amount of endogenous human VCAM-1/CD106 in unspiked serum was subtracted from the spike values. The recovery ranged from 85–104%with an overall mean recovery of 89%.

Dilution parallelism

Four serum samples with different levels of human VCAM-1/CD106 were analyzed at serial 2-fold dilutions with 4 replicates each. The recovery ranged from 87% to 120% with an overall recovery of 100%.

	Human VCAM-1/CD106			Recovery of
C	Dilastian		(ng/mL)	
Sample	Dilution	Expected Concentration	Observed	Concentration (%)
	1:50	_	1,409.3	-
1	1:100	704.6	639.5	91
ļ ļ	1:200	352.3	306.0	87
	1:400	176.2	166.2	94
	1:50	-	639.1	-
2	1:100	319.5	308.3	97
2	1:200	159.8	174.2	109
	1:400	79.9	86.9	109
	1:50	-	795.3	-
3	1:100	397.7	368.2	93
3	1:200	198.8	189.5	95
	1:400	99.4	94.5	95
	1:50	_	508.8	-
,	1:100	254.4	244.8	96
4	4 1:200 127.2	127.2	152.7	120
	1:400	63.6	70.1	110

Sample stability

Freeze-Thaw stability

Aliquots of serum samples (spiked or unspiked) were stored at -20°C and thawed 5 times, and the human VCAM-1/CD106 levels determined. There was no significant loss of human VCAM-1/CD106 immunoreactivity detected by freezing and thawing.

Storage stability

Aliquots of serum samples (spiked or unspiked) were stored at -20° C, $2-8^{\circ}$ C, room temperature, and at 37° C, and the human VCAM-1/CD106 level determined after 24 hours. There was no significant loss of human VCAM-1/CD106 immunoreactivity detected during storage at -20° C, $2-8^{\circ}$ C and room temperature.

A significant loss of human VCAM-1/CD106 immunoreactivity (20%) was detected during storage at 37° C after 24 hours.

Comparison of serum and plasma

From 2 individuals each, serum as well as EDTA, citrate, and heparin plasma was obtained at the same time and tested for human VCAM-1/CD106. Concentrations were not signi icantly different and therefore all these blood preparations are suitable for use in the assay.

It is nevertheless highly recommended to assure the uniformity of blood preparations.

Specifcity

The assay detects both natural and recombinant human VCAM-1/CD106. The interference of circulating factors of the immune system was evaluated by spiking these proteins at physiologically relevant concentrations into a human VCAM-1/CD106 positive serum. No cross-reactivity was detected, notably not with other members of the immunoglobulin gene superfamily.

Expected values

Panels of 40 serum as well as EDTA, citrate and heparin plasma samples from randomly selected apparently healthy donors (males and females) were tested for human VCAM-1/CD106. The levels measured may vary with the sample collection used.

Sample matrix	Number of samples evaluated	Range (ng/mL)	Mean (ng/mL)	Standard deviation (ng/mL)
Serum	40	400.6-1,340.8	772.4	207.2
Plasma (EDTA)	40	297.1–1,563.3	704.7	304.1
Plasma (citrate)	40	131.3-1,222.7	763.5	224.4
Plasma (heparin)	40	343.9-1,254.2	670.2	235.5

Reagent preparation summary

Wash buffer (1x)

Add Wash Buffer Concentrate 20x (50 mL) to 950 mL distilled water.

Number of Strips	Wash Buffer Concentrate (mL)	Distilled Water (mL)
1 - 6	25	475
1 - 12	50	950

Assay buffer (1x)

Add Assay Buffer Concentrate 20x (5 mL) to 95 mL distilled water.

Number of Strips	Assay Buffer Concentrate (mL)	Distilled Water (mL)
1 - 6	2.5	47.5
1 - 12	5.0	95.0

Conjugate mixture

Make a 1:100 dilution of the Conjugate Mixture (Biotin-Conjugate mixed with Streptavidin-HRP) in Assay Buffer (1x) just prior to use:

Number of Strips	Conjugate Mixture (mL)	Assay Buffer (1x) (mL)
1 - 6	0.03	2.97
1 - 12	0.06	5.94

Human VCAM-1/CD106 standard

Reconstitute lyophilized human VCAM-1/CD106 standard with distilled water. (Reconstitution volume is stated on the label of the standard vial.)

Controls

Add 150 µL distilled water to lyophilized controls.

Test protocol summary

- 1. Predilute serum and plasma samples with Assay Buffer (1x) 1:50.
- 2. Determine the number of microwell strips required.
- 3. Wash microwell strips twice with Wash Buffer.

- 4. Standard dilution on the microwell plate: Add 100 μ L Assay Buffer, in duplicate, to all standard wells. Pipette 100 μ L prepared standard into the first wells and create standard dilutions by transferring 100 μ L from well to well. Discard 100 μ L from the last wells.
 - Alternatively external standard dilution in tubes (see "External standard dilution" on page 3): Pipette 100 μL of these standard dilutions in the microwell strips.
- 5. Add 100 µL Assay Buffer (1x), in duplicate, to the blank wells.
- 6. Add 100 μL prediluted samples, in duplicate, to designated sample wells.
- **7.** Prepare Conjugate Mixture.
- 8. Add 50 μL Conjugate Mixture to all wells.
- Cover microwell strips and incubate 2 hours at room temperature (18° to 25°C).
- 10. Empty and wash microwell strips 3 times with Wash Buffer.
- 11. Add 100 µL of TMB Substrate Solution to all wells.
- 12. Incubate the microwell strips for about 10 minutes at room temperature (18° to 25°C).
- 13. Add 100 µL Stop Solution to all wells.
- 14. Blank microwell reader and measure color intensity at 450 nm.

Note: If instructions in this protocol have been followed, serum and plasma samples have been diluted 1:50 (10 μ L sample + 490 μ L Assay Buffer (1x)) and the concentration read from the standard curve must be multiplied by the dilution factor (x 50).

Customer and technical support

Visit https://www.novusbio.com/support for service and support information.

Limited product warranty

Novus Biologicals and/or its affiliate(s) warrant their products as set forth in Novus Biologicals' Terms and Conditions.

If you have any questions, please contact Novus Biologicals at https://www.novusbio.com/support.