

PRODUCT INFORMATION & MANUAL

Cathepsin B Assay Kit (Fluorometric) NBP2-54841

For research use only.

Not for diagnostic or therapeutic procedures.

Cathepsin B Activity Fluorometric Assay Kit

(Catalog #NBP2-54841; Store kit at -20°C)

I. Introduction:

Apoptosis can be mediated by mechanisms other than the traditional caspase-mediated cleavage cascade. There is growing recognition that alternative proteolytic enzymes such as the lysosomal cathepsin proteases may initiate or propagate proapoptotic signals. Cathepsins are lysosomal enzymes that are also used as sensitive markers in various toxicological investigations. The Cathepsin-B Activity Assay kit is a fluorescence-based assay that utilizes the preferred cathepsin-B substrate sequence RR labeled with AFC (amino-4-trifluoromethyl coumarin). Cell lysates or other samples that contain cathepsin-B will cleave the synthetic substrate RR-AFC to release free AFC. The released AFC can easily be quantified using a fluorometer or fluorescence plate reader. The cathepsin-B assay is simple, straightforward, and can be adapted to 96-well plate assays. Assay conditions have been optimized to obtain the maximal activity.

II. Kit Contents:

Components	NBP2-54841	Cap Code
CB Cell Lysis Buffer CB Reaction Buffer CB Substrate Ac-RR-AFC (10 mM) CB Inhibitor (1 mM)	25 ml 5 ml 0.2 ml 20 μl	WM NM Brown Red

III. Storage and Stability:

 Store kit at -20°C (Store CB Cell Lysis Buffer and CB Reaction Buffer at 4°C after opening). Protect CB Substrate Ac-RR-AFC from light. All reagents are stable for 6 months under proper storage conditions.

IV. Cathepsin B Assay Protocol:

- 1. Collect cells (1-5 x 10⁶) by centrifugation.
 - Note: Use 50-200 μg cell lysates (in 50 μl of Cell lysis Buffer) if protein concentration has been measured.
- 2. Lyse cells in 50 ul of chilled CB Cell Lysis Buffer. Incubate cells on ice for 10 min.
- 3. Centrifuge at top speed in a microcentrifuge for 5 min, transfer the supernatant to a new tube. Add 50 µl of cell lysate to a 96-well plate.

Note: We recommend using a flat bottom, opaque, white or black 96-well plate for enhanced sensitivity.

- 4. Add 50 µl of CB Reaction Buffer to each sample.
- 5. Add 2 μl of the 10 mM CB Substrate Ac-RR-AFC (200 μM final concentration).

Note: For negative control, add 2 µl of CB Inhibitor (Optional).

- 6. Incubate at 37°C for 1-2 hour.
- 7. Read samples in a fluorometer equipped with a 400-nm excitation filter and 505-nm emission filter. For a plate-reading set-up, transfer the samples to a 96-well plate. You may also perform the entire assay directly in a 96-well plate.

Fold-increase in Cathepsin B activity can be determined by comparing the relative fluorescence units (RFU) with the level of the uninduced control or the negative control sample. If desired, the units of cathepsin B can be determined by generating a standard curve using free AFC under your assay conditions.

GENERAL TROUBLESHOOTING GUIDE FOR CATHEPSIN FLUOROMETRIC KITS:

Problems	Cause	Solution	
Assay not working	Cells did not lyse completely	• Resuspend the cell pellet in the lysis buffer and incubate as described in the datasheet	
	Experiment was not performed at optimal time after apoptosis induction	Perform a time-course induction experiment for apoptosis	
	Plate read at incorrect wavelength	Check the wavelength listed in the datasheet and the filter settings of the instrument	
High Background	Increased amount of cell lysate used	Refer to datasheet and use the suggested cell number to prepare lysates	
	Increased amounts of components added due to incorrect incetting	Use calibrated pipettes	
	pipetting • Incubation of cell samples for extended periods	Refer to datasheet and incubate for exact times	
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the individual components appropriately	
	Contaminated cells	Check for bacteria/ yeast/ mycoplasma contamination	
Lower signal levels	Cells did not initiate apoptosis	Determine the time-point for initiation of apoptosis after induction (time-course experiment)	
	Very few cells used for analysis	Refer to datasheet for appropriate cell number	
	Use of samples stored for a long time	Use fresh samples or aliquot and store and use within one month for the assay	
	Incorrect setting of the equipment used to read samples	Refer to datasheet and use the recommended filter setting	
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use	
Samples with erratic readings	Uneven number of cells seeded in the wells	Seed only equal number of healthy cells (correct passage number)	
	Samples prepared in a different buffer	Use the cell lysis buffer provided in the kit	
	Adherent cells dislodged and lost at the time of experiment	Perform experiment gently and in duplicates/triplicates; apoptotic cells may become floaters.	
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe efficiency of lysis under microscope	
	Samples used after multiple freeze-thaw cycles	Aliquot and freeze samples, if needed to use multiple times	
	Presence of interfering substance in the sample	Troubleshoot as needed	
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use	
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting	
	Cell samples contain interfering substances	Troubleshoot if it interferes with the kit (run proper controls)	
General issues	Improperly thawed components	Thaw all components completely and mix gently before use	
	Incorrect incubation times or temperatures	Refer to datasheet & verify the correct incubation times and temperatures	
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly	
	Air bubbles formed in the well/tube	Pipette gently against the wall of the well/tubes	
	Substituting reagents from older kits/ lots	Use fresh components from the same kit	
	Use of a different 96-well plate	Fluorescence: Black plates; Absorbance: Clear plates Page 2	
Note: The most probable cause is	s listed under each section. Causes may overlap with other sections.	1 490 2	