

Human Kininogen (HMW) ELISA Kit

Novus Biologicals a bio-techne brand
8100 Southpark Way A-8
Littleton, CO 80120
T 303-730-1950
F 303-730-1966
www.novusbio.com

For any questions regarding troubleshooting or performing the assay, please contact
our support team at technical@novusbio.com.

Thank you for choosing Novus Biologicals.

Assay Summary

Step 1. Add 25 μ l of Standard or Sample and 25 μ l of Biotinylated Protein per well.
Incubate 2 hours.

Step 2. Wash, then add 50 μ l of SP Conjugate per well.
Incubate 30 minutes.

Step 3. Wash, then add 50 μ l of Chromogen Substrate per well.
Incubate 15 minutes.

Step 4. Add 50 μ l of Stop Solution per well.
Read at 450 nm immediately.

Symbol Key

Consult instructions for use.

Assay Template

Human Kininogen (HMW) ELISA Kit

Catalog No. NBP2-60460

Sample insert for reference use only

Introduction

High molecular weight kininogen (HK) is a plasma protein coagulation cofactor serving for the activation of zymogens: prekallikrein, factor XII, and factor XI, and is a substrate of each of their proteolytic forms. It circulates as a complex with these zymogens and links the plasma coagulation, fibrinolysis, complement activation, and blood pressure control. HK is produced by the liver and weighs 120 kDa with 626 amino acids. Its plasma concentration ranges from 55 to 90 μ g/ml (1-5). HK exhibits anticoagulant properties and is a strong inhibitor of cysteine proteases. Upon cleavage by kallikrein, the released active peptide, bradykinin, mediates NO release, vasodilation, hypotension, and pain. The remaining cleaved HK (HKa) exhibits antiadhesive and antiangiogenic activity, enhancing cell-associated fibrinolysis and releasing cytokines and chemokines to enhance inflammation. Patients with HK deficiency exhibit abnormal surface-mediated activation of fibrinolysis (6-7).

Principle of the Assay

The Human Kininogen (HMW) ELISA (Enzyme-Linked Immunosorbent Assay) Kit is designed for detection of kininogen in human **plasma and serum samples**. This assay employs a quantitative **competitive enzyme immunoassay** technique that measures human kininogen in approximately 3 hours. A polyclonal antibody specific for human kininogen has been precoated onto a 96-well microplate with removable strips. Kininogen in standards and samples is competed with a biotinylated kininogen protein sandwiched by the immobilized antibody and streptavidin-peroxidase (SP) conjugate. All unbound material is washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured.

Caution and Warning

- This product is for **Research Use Only** and is not intended for use in diagnostic procedures.
- Prepare all reagents (diluent buffer, wash buffer, standard, biotinylated protein, and SP conjugate) as instructed, prior to running the assay.

- Prepare all samples prior to running the assay. The dilution factors for the samples are suggested in this insert. However, the user should determine the optimal dilution factor.
- Spin down the SP conjugate vial before opening and using contents.
- The Stop Solution is an acidic solution.
- The kit should not be used beyond the expiration date.

Reagents

- **Human Kininogen (HMW) Microplate:** A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against human kininogen.
- **Sealing Tapes:** Each kit contains 3 pre cut, pressure sensitive sealing tapes that can be cut to fit the format of the individual assay.
- **Human Kininogen (HMW) Standard:** Human kininogen in a buffered protein base (1.6 µg, lyophilized, 2 vials).
- **Biotinylated Human Kininogen (HMW) Protein (2x):** Lyophilized, 2 vials.
- **MIX Diluent Concentrate (10x):** A 10-fold concentrated buffered protein base (30 ml).
- **Wash Buffer Concentrate (20x):** A 20-fold concentrated buffered surfactant (30 ml).
- **SP Conjugate (100x):** A 100-fold concentrate (80 µl).
- **Chromogen Substrate (1x):** A stabilized peroxidase chromogen substrate tetramethylbenzidine (8 ml).
- **Stop Solution (1x):** A 0.5 N hydrochloric acid solution to stop the chromogen substrate reaction (12 ml).

Storage Condition

- Upon arrival, immediately store components of the kit at recommended temperatures up to the expiration date.
- Store SP Conjugate at -20°C.
- Store Microplate, Diluent Concentrate (10x), Wash Buffer, Stop Solution, and Chromogen Substrate at 2-8°C.
- Unused microplate wells may be returned to the foil pouch with the desiccant packs and resealed. May be stored for up to 30 days in a vacuum desiccator.
- Diluent (1x) may be stored for up to 30 days at 2-8°C.
- Store Standard and Biotinylated Protein at 2-8°C before reconstituting with Diluent.

Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm.
- Pipettes (1-20 μ l, 20-200 μ l, 200-1000 μ l, and multiple channel).
- Deionized or distilled reagent grade water.

Sample Collection, Preparation, and Storage

- **Plasma:** Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3000 $\times g$ for 10 minutes and collect plasma. A 200-fold sample dilution is suggested into MIX Diluent; however, users should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles (EDTA or Heparin can also be used as an anticoagulant).
- **Serum:** Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3000 $\times g$ for 10 minutes and remove serum. A 200-fold sample dilution is suggested into MIX Diluent; however, users should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

Refer to Dilution Guidelines for further instruction.

Guidelines for Dilutions of 100-fold or Greater <i>(for reference only; please follow the insert for specific dilution suggested)</i>	
100x	10000x
A) 4 μ l sample : 396 μ l buffer (100x) = 100-fold dilution <i>Assuming the needed volume is less than or equal to 400 μl.</i>	A) 4 μ l sample : 396 μ l buffer (100x) B) 4 μ l of A : 396 μ l buffer (100x) = 10000-fold dilution <i>Assuming the needed volume is less than or equal to 400 μl.</i>
1000x	100000x
A) 4 μ l sample : 396 μ l buffer (100x) B) 24 μ l of A : 216 μ l buffer (10x) = 1000-fold dilution <i>Assuming the needed volume is less than or equal to 240 μl.</i>	A) 4 μ l sample : 396 μ l buffer (100x) B) 4 μ l of A : 396 μ l buffer (100x) C) 24 μ l of B : 216 μ l buffer (10x) = 100000-fold dilution <i>Assuming the needed volume is less than or equal to 240 μl.</i>

Reagent Preparation

- Freshly dilute all reagents and bring all reagents to room temperature before use.
- **MIX Diluent Concentrate (10x):** If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved. Dilute the MIX Diluent Concentrate 10-fold with reagent grade water to produce a 1x solution. Store for up to 30 days at 2-8°C.
- **Human Kininogen (HMW) Standard:** Reconstitute the Human Kininogen (HMW) Standard (1.6 µg) with 0.4 ml of MIX Diluent to generate a 4 µg/ml standard stock solution. Allow the vial to sit for 10 minutes with gentle agitation prior to making dilutions. Prepare duplicate or triplicate standard points by serially diluting from the standard stock solution (4 µg/ml) 2-fold with equal volume of MIX Diluent to produce 2, 1, 0.5, 0.25, 0.125, and 0.063 µg/ml solutions. MIX Diluent serves as the zero standard (0 µg/ml). Reconstitute a new vial for each assay.

Standard Point	Dilution	[Kininogen] (µg/ml)
P1	1 part Standard (4 µg/ml)	4.0
P2	1 part P1 + 1 part MIX Diluent	2.0
P3	1 part P2 + 1 part MIX Diluent	1.0
P4	1 part P3 + 1 part MIX Diluent	0.5
P5	1 part P4 + 1 part MIX Diluent	0.25
P6	1 part P5 + 1 part MIX Diluent	0.125
P7	1 part P6 + 1 part MIX Diluent	0.063
P8	MIX Diluent	0.0

- **Biotinylated Human Kininogen (HMW) Protein (2x):** Reconstitute the Biotinylated Human Kininogen (HMW) Protein with 3 ml of MIX Diluent to produce a stock solution. Allow the vial to sit for 10 minutes with gentle agitation prior to dilution. From the stock solution, dilute 2-fold with MIX Diluent to produce a 1x solution. Reconstitute a new vial each assay.
- **Wash Buffer Concentrate (20x):** If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved. Dilute the Wash Buffer Concentrate 20-fold with reagent grade water to produce a 1x solution.
- **SP Conjugate (100x):** Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 100-fold with MIX Diluent to produce a 1x solution. The undiluted conjugate should be stored at -20°C.

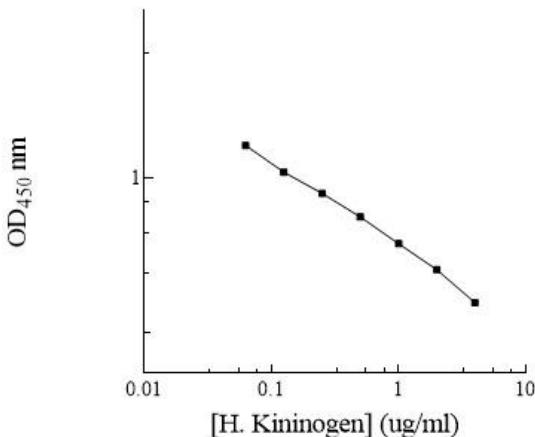
Assay Procedure

- Prepare all reagents, standard solutions, and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature (20-25°C).
- Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccants inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.
- Add 25 µl of Human Kininogen (HMW) Standard or sample to each well, and immediately add 25 µl of Biotinylated Human Kininogen (HMW) Protein to each well (on top of the standard or sample). Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 2 hours. Start the timer after the last addition.
- Wash five times with 200 µl of Wash Buffer manually. Invert the plate each time and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If using a machine, wash six times with 300 µl of Wash Buffer and then invert the plate, decanting the contents; hit 4-5 times on absorbent material to completely remove the liquid.
- Add 50 µl of SP Conjugate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.
- Wash the microplate as described above.
- Add 50 µl of Chromogen Substrate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Incubate for 15 minutes or until the optimal blue color density develops.
- Add 50 µl of Stop Solution to each well. The color will change from blue to yellow. Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed.
- Read the absorbance on a microplate reader at a wavelength of 450 nm **immediately**. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at low concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.

Data Analysis

- Calculate the mean value of the duplicate or triplicate readings for each standard and sample.
- To generate a standard curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance (OD) on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit.
- Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.

Typical Data


- The typical data is provided for reference only. Individual laboratory means may vary from the values listed. Variations between laboratories may be caused by technique differences.

Standard Point	µg/ml	OD	Average OD
P1	4.0	0.361 0.355	0.358
P2	2.0	0.473 0.470	0.472
P3	1.0	0.583 0.583	0.583
P4	0.5	0.726 0.725	0.726
P5	0.25	0.888 0.874	0.881
P6	0.125	1.058 1.042	1.050
P7	0.063	1.312 1.309	1.311
P8	0.0	1.633 1.630	1.632
Sample: Pooled Normal Sodium Citrate Plasma (200x)		0.714 0.712	0.713

Standard Curve

- The curve is provided for illustration only. A standard curve should be generated each time the assay is performed.

H. HMW Kininogen Standard Curve

Reference Value

- Plasma and serum samples from healthy adults were tested (n=20). On average, human kininogen (HMW) level was 94 μ g/ml.

Performance Characteristics

- The minimum detectable dose of human kininogen as calculated by 2SD from the mean of a zero standard was established to be 0.04 μ g/ml.
- Intra-assay precision was determined by testing three plasma samples twenty times in one assay.
- Inter-assay precision was determined by testing three plasma samples in twenty assays.

Sample	Intra-Assay Precision			Inter-Assay Precision		
	1	2	3	1	2	3
n	20	20	20	20	20	20
CV (%)	4.9%	5.3%	4.6%	9.6%	9.3%	9.8%
Average CV (%)	4.9%			9.6%		

Recovery

Standard Added Value	0.25 – 2 µg/ml
Recovery %	92 – 111%
Average Recovery %	97%

Linearity

- Plasma and serum samples were serially diluted to test for linearity.

Average Percentage of Expected Value (%)		
Sample Dilution	Plasma	Serum
100x	105%	106%
200x	100%	98%
400x	94%	96%

Cross-Reactivity

Species	Cross-Reactivity (%)
Canine	None
Bovine	None
Monkey	<5%
Mouse	None
Rat	None
Swine	None
Rabbit	None
Name	Cross-Reactivity (%)
Kininogen (LMW)	15%

Troubleshooting

Issue	Causes	Course of Action
Low Precision	Use of expired components	<ul style="list-style-type: none"> Check the expiration date listed before use. Do not interchange components from different lots.
	Improper wash step	<ul style="list-style-type: none"> Check that the correct wash buffer is being used. Check that all wells are empty after aspiration. Check that the microplate washer is dispensing properly. If washing by pipette, check for proper pipetting technique.
	Splashing of reagents while loading wells	<ul style="list-style-type: none"> Pipette properly in a controlled and careful manner.
	Inconsistent volumes loaded into wells	<ul style="list-style-type: none"> Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance.
	Insufficient mixing of reagent dilutions	<ul style="list-style-type: none"> Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions.
	Improperly sealed microplate	<ul style="list-style-type: none"> Check the microplate pouch for proper sealing. Check that the microplate pouch has no punctures. Check that three desiccants are inside the microplate pouch prior to sealing.
Unexpectedly Low or High Signal Intensity	Microplate was left unattended between steps	<ul style="list-style-type: none"> Each step of the procedure should be performed uninterrupted.
	Omission of step	<ul style="list-style-type: none"> Consult the provided procedure for complete list of steps.
	Steps performed in incorrect order	<ul style="list-style-type: none"> Consult the provided procedure for the correct order.
	Insufficient amount of reagents added to wells	<ul style="list-style-type: none"> Check pipette calibration. Check pipette for proper performance.
	Wash step was skipped	<ul style="list-style-type: none"> Consult the provided procedure for all wash steps.
	Improper wash buffer	<ul style="list-style-type: none"> Check that the correct wash buffer is being used.
	Improper reagent preparation	<ul style="list-style-type: none"> Consult reagent preparation section for the correct dilutions of all reagents.
Deficient Standard Curve Fit	Insufficient or prolonged incubation periods	<ul style="list-style-type: none"> Consult the provided procedure for correct incubation time.
	Non-optimal sample dilution	<ul style="list-style-type: none"> Sandwich ELISA: If samples generate OD values higher than the highest standard point (P1), dilute samples further and repeat the assay. Competitive ELISA: If samples generate OD values lower than the highest standard point (P1), dilute samples further and repeat the assay. User should determine the optimal dilution factor for samples.
	Contamination of reagents	<ul style="list-style-type: none"> A new tip must be used for each addition of different samples or reagents during the assay procedure.
	Contents of wells evaporate	<ul style="list-style-type: none"> Verify that the sealing film is firmly in place before placing the assay in the incubator or at room temperature.
Improper pipetting		<ul style="list-style-type: none"> Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance.

	Insufficient mixing of reagent dilutions	<ul style="list-style-type: none">• Thoroughly agitate the lyophilized components after reconstitution.• Thoroughly mix dilutions.
--	--	---

References

- (1) Reddigari SR *et al.* (1993) *Blood* 81: 1306-1311
- (2) Maier M *et al.* (1983) *Proc. Natl. Acad. Sci. USA* 80: 3928-3932
- (3) Kellermann J *et al.* (1986) *Eur. J. Biochem.* 154: 471-478
- (4) Kitamura N *et al.* (1985) *J. Biol. Chem.* 260: 8610-8617
- (5) Kerbiriou DM and Griffin JH (1979) *J. Biol. Chem.* 254: 12020-12027
- (6) Coffman LG *et al.* (2009) *Proc. Natl. Acad. Sci. USA* 106: 570-575
- (7) Hassan S *et al.* (2007) *Am. J. Physiol. Heart Circ. Physiol.* 292: H2959-H2965

Version 2.3