

ELISA PRODUCT INFORMATION & MANUAL

Human Lysozyme ELISA Kit NBP2-60513

Enzyme-linked Immunosorbent Assay for quantitative detection of Human Lysozyme. For research use only. Not for diagnostic or therapeutic procedures.

Assay Summary

Step 1. Add 25 μ l of Standard and/or Sample and 25 μ l of Biotinylated Protein per well. Incubate 2 hours.

Step 2. Wash, then add 50 μ l of SP Conjugate per well. Incubate 30 minutes.

Step 3. Wash, then add 50 μ l of Chromogen Substrate per well. Incubate 10 minutes.

Step 4. Add 50 μ l of Stop Solution per well. Read at 450 nm immediately.

Assay Template

12								
11								
10								
6								
80								
7								
9								
ı								
4								
æ								
2								
1								
	Ą	В	0	Q	Е	F	9	I

Human Lysozyme ELISA Kit

Catalog No. NBP2-60513

Sample insert for reference use only

Introduction

Lysozyme is one of the anti-microbial agents found in human milk and is also present in spleen, lung, kidney, white blood cells, plasma, saliva, and tears. Lysozyme has 130 amino acids, is synthesized by granulocytes and macrophages, and its natural substrate is the bacterial cell wall peptidoglycan (1, 2).

Principle of the Assay

The Human Lysozyme ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for detection of lysozyme in human milk samples. This assay employs a quantitative competitive enzyme immunoassay technique that measures human lysozyme in approximately 3 hours. A polyclonal antibody specific for lysozyme has been pre-coated onto a 96-well microplate with removable strips. Lysozyme in standards and samples is competed with a biotinylated lysozyme sandwiched by the immobilized antibody and streptavidin-peroxidase conjugate. All unbound material is washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured

Caution and Warning

- This product is for Research Use Only and is not intended for use in diagnostic procedures.
- Prepare all reagents (diluent buffer, wash buffer, standard, biotinylated protein, and SP conjugate) as instructed, prior to running the assay.
- Prepare all samples prior to running the assay. The dilution factors for the samples are suggested in this insert. However, the user should determine the optimal dilution factor.
- Spin down the SP conjugate vial before opening and using contents.
- The Stop Solution is an acidic solution.
- The kit should not be used beyond the expiration date.

Reagents

- Human Lysozyme Microplate: A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against human lysozyme.
- Sealing Tapes: Each kit contains 3 precut, pressure sensitive sealing tapes, which can be cut to fit the format of the individual assay.
- Human Lysozyme Standard: Human lysozyme in a buffered protein base (12 μg, lyophilized).
- Biotinylated Human Lysozyme Protein: Lyophilized, 1 vial.
- EIA Diluent Concentrate (10x): A 10-fold concentrated buffered protein base (30 ml).
- Wash Buffer Concentrate (20x): A 20-fold concentrated buffered surfactant (30 ml).
- Streptavidin-Peroxidase Conjugate (SP Conjugate): A 100-fold concentrate (80 μl).
- Chromogen Substrate: A ready-to-use stabilized peroxidase chromogen substrate tetramethylbenzidine (8 ml).
- Stop Solution: A 0.5 N hydrochloric acid to stop the chromogen substrate reaction (12 ml).

Storage Condition

- Upon arrival, immediately store components of the kit at recommended temperatures up to the expiration date.
- Store SP Conjugate at -20°C.
- Store Microplate, Diluent Concentrate (10x), Wash Buffer, Stop Solution, and Chromogen Substrate at 2-8°C.
- Unused microplate wells may be returned to the foil pouch with the desiccant packs and resealed. May be stored for up to 30 days in a vacuum desiccator.
- Diluent (1x) may be stored for up to 30 days at 2-8°C.
- Store Standard and Biotinylated Protein at 2-8°C before reconstituting with Diluent and at -20°C after reconstituting with Diluent.

Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm.
- Pipettes (1-20 μl, 20-200 μl, 200-1000 μl, and multiple channel).
- Deionized or distilled reagent grade water.

Sample Collection, Preparation, and Storage

 Milk: Collect milk using sample tube. Centrifuge samples at 800 x g for 10 minutes. A 200-fold sample dilution is suggested into EIA Diluent or within the range of 20x to 2000x; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

Refer to Sample Dilution Guidelines for further instruction.

	Guidelines for Dilutions of 100-fold or Greater					
-	(for reference only; please follow the	inser	, , , , , ,			
	100x	10000x				
A)	4 μl sample: 396 μl buffer (100x)	A)	4 μl sample : 396 μl buffer (100x)			
	= 100-fold dilution	B)	4 μl of A : 396 μl buffer (100x) = 10000-fold dilution			
	Assuming the needed volume is less than or equal to 400 μ l.		Assuming the needed volume is less than or equal to $400 \mu l$.			
1000x			100000x			
A)	4 μl sample : 396 μl buffer (100x)	A)	4 μl sample : 396 μl buffer (100x)			
B)	24 μl of A : 216 μl buffer (10x)	B)	4 μl of A : 396 μl buffer (100x)			
	= 1000-fold dilution	C)	24 μl of B : 216 μl buffer (10x)			
			= 100000-fold dilution			
	Assuming the needed volume is less than or equal to 240 μ l.		Assuming the needed volume is less than or equal to 240 μ l.			

Reagent Preparation

- Freshly dilute all reagents and bring all reagents to room temperature before use.
- EIA Diluent Concentrate (10x): If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved. Dilute the EIA Diluent Concentrate 10-fold with reagent grade water. Store for up to 30 days at 2-8°C.
- Human Lysozyme Standard: Reconstitute the Human Lysozyme Standard (12 μg) with 4 ml of EIA Diluent to generate a 3 μg/ml standard stock solution. Allow the standard to sit for 10 minutes with gentle agitation prior to making dilutions. Prepare duplicate or triplicate standard points by serially diluting from the standard stock solution (3 μg/ml) 2-fold with equal volume of EIA Diluent to produce 1.5, 0.75, 0.375, 0.188, 0.094, and 0.047 μg/ml solutions. EIA Diluent serves as the zero standard (0 μg/ml). Any remaining stock solution should be frozen at -20°C and used within 30 days.

Standard Point	Dilution	[Lysozyme] (μg/ml)
P1	1 part Standard (3 μg/ml)	3.0
P2	1 part P1 + 1 part EIA Diluent	1.5
Р3	1 part P2 + 1 part EIA Diluent	0.75
P4	1 part P3 + 1 part EIA Diluent	0.375
P5	1 part P4 + 1 part EIA Diluent	0.188
P6	1 part P5 + 1 part EIA Diluent	0.094
P7	1 part P6 + 1 part EIA Diluent	0.047
P8	EIA Diluent	0.0

- Biotinylated Human Lysozyme Protein (1x): Reconstitute Biotinylated Human Lysozyme Protein with 4 ml of EIA Diluent to produce a stock solution. Allow the vial to sit for 10 minutes with gentle agitation prior to use. Any remaining stock solution should be frozen at -20°C and used within 30 days.
- Wash Buffer Concentrate (20x): If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved.
 Dilute the Wash Buffer Concentrate 20-fold with reagent grade water.
- SP Conjugate (100x): Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 100-fold with EIA Diluent. The undiluted conjugate should be stored at -20°C.

Assay Procedure

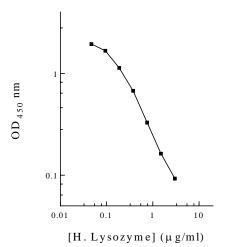
- Prepare all reagents, standard solutions, and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature (20-25°C).
- Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccants inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.
- Add 25 μl of Human Lysozyme Standard and/or sample to each well, and immediately add 25 μl of Biotinylated Human Lysozyme Protein to each well (on top of the standard or sample). Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 2 hours. Start the timer after the last addition.
- Wash five times with 200 µl of Wash Buffer manually. Invert the plate each time and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If using a machine, wash six times with 300 µl of Wash Buffer and then invert the plate, decanting the contents; hit 4-5 times on absorbent material to completely remove the liquid.

- Add 50 µl of Streptavidin-Peroxidase Conjugate to each well. Gently tap
 plate to thoroughly coat the wells. Break any bubbles that may have
 formed. Cover wells with a sealing tape and incubate for 30 minutes.
 Turn on the microplate reader and set up the program in advance.
- Wash the microplate as described above.
- Add 50 µl of Chromogen Substrate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Incubate for 10 minutes or until the optimal blue color density develops.
- Add 50 µl of Stop Solution to each well. The color will change from blue to yellow. Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed.
- Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections.
 Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at low concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.

Data Analysis

- Calculate the mean value of the duplicate or triplicate readings for each standard and sample.
- To generate a standard curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance (OD) on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit.
- Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.

Typical Data


The typical data is provided for reference only. Individual laboratory
means may vary from the values listed. Variations between laboratories
may be caused by technique differences.

Standard Point	μg/ml	OD	Average OD
P1	3.0	0.099	0.093
		0.087	
P2	1.5	0.172	0.163
	1.5	0.154	0.103
P3	0.75	0.335	0.330
P3	0.75	0.325	0.550
P4	0.375	0.680	0.676
		0.672	0.676
P5	0.188	1.139	1.131
		1.122	1.131
P6	0.094	1.679	1.672
PO		1.664	1.072
P7	0.047	1.946	1.943
Ρ/	0.047	1.940	1.945
P8	0.0	2.202	2.202
РО	0.0	2.201	2.202

Standard Curve

• The curve is provided for illustration only. A standard curve should be generated each time the assay is performed.

H. Lysozyme Standard Curve

Performance Characteristics

- This assay recognizes both natural and recombinant human lysozyme.
- The minimum detectable dose of lysozyme as calculated by 2SD from the mean of a zero standard was established to be 0.04 μg/ml.
- Intra-assay precision was determined by testing three milk samples twenty times in one assay.
- Inter-assay precision was determined by testing three milk samples in twenty assays.

	Intra-Assay Precision			Inter-Assay Precision		
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
CV (%)	2.4%	4.6%	4.9%	9.8%	9.9%	10.0%
Average CV (%)	_	4.0%		_	9.9%	

Recovery

Standard Added Value	0.1 – 1.5 μg/ml	
Recovery %	89 – 114%	
Average Recovery %	98%	

Linearity

Milk samples were serially-diluted to test for linearity.

Average Percentage of Expected Value (%)			
Sample Dilution	Milk		
100x	104%		
200x	98%		
400x	95%		

Cross-Reactivity

Species	Cross Reactivity (%)		
Canine	None		
Bovine	None		
Monkey	None		
Mouse	None		
Rat	None		
Swine	<10%		

Troubleshooting

Issue	Causes	Course of Action		
	Use of expired	Check the expiration date listed before use.		
	components	 Do not interchange components from different lots. 		
		Check that the correct wash buffer is being used.		
		 Check that all wells are empty after aspiration. 		
	Improper wash step	 Check that the microplate washer is dispensing properly. 		
		 If washing by pipette, check for proper pipetting 		
_		technique.		
Low Precision	Splashing of reagents while loading wells	Pipette properly in a controlled and careful manner.		
re	Inconsistent volumes	 Pipette properly in a controlled and careful manner. 		
≥	loaded into wells	Check pipette calibration.		
ģ	lodded into Wells	Check pipette for proper performance.		
_	Insufficient mixing of	 Thoroughly agitate the lyophilized components after 		
	reagent dilutions	reconstitution.		
		Thoroughly mix dilutions.		
		 Check the microplate pouch for proper sealing. 		
	Improperly sealed	 Check that the microplate pouch has no punctures. 		
	microplate	Check that three desiccants are inside the microplate		
		pouch prior to sealing.		
l _	Microplate was left	Each step of the procedure should be performed		
na	unattended between	uninterrupted.		
ig	steps			
۲	Omission of step	Consult the provided procedure for complete list of steps.		
1 5 €	Steps performed in incorrect order	 Consult the provided procedure for the correct order. 		
<u> </u>	Insufficient amount of	Check pipette calibration.		
Unexpectedly Low or High Signal Intensity	reagents added to	Check pipette cambration: Check pipette for proper performance.		
	wells	Check pipette for proper performance.		
<u> </u>	Wash step was skipped	Consult the provided procedure for all wash steps.		
eq	Improper wash buffer	Check that the correct wash buffer is being used.		
ಜ್ಞ	Improper reagent	Consult reagent preparation section for the correct		
ğ	preparation	dilutions of all reagents.		
) e	Insufficient or	Consult the provided procedure for correct incubation		
j	prolonged incubation	time.		
	periods			
		 Sandwich ELISA: If samples generate OD values higher 		
⊭		than the highest standard point (P1), dilute samples		
l a		further and repeat the assay.		
Ž	Non-optimal sample	Competitive ELISA: If samples generate OD values lower		
3	dilution	than the highest standard point (P1), dilute samples		
5		further and repeat the assay. User should determine the optimal dilution factor for		
da		samples.		
Deficient Standard Curve Fit	Contamination of	A new tip must be used for each addition of different		
St	reagents	samples or reagents during the assay procedure.		
Ę	Contents of wells	Verify that the sealing film is firmly in place before placing		
cie	evaporate	the assay in the incubator or at room temperature.		
ě	2.250.000	Pipette properly in a controlled and careful manner.		
ă	Improper pipetting	Check pipette calibration.		
	b. ober biberning	Check pipette calibration. Check pipette for proper performance.		
	l	manager property of manager		

Insufficient mixing of reagent dilutions	 Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions.
--	--

Version 2.6