SIOLOGICALS a biotechne brand

PRODUCT INFORMATION & ELISA MANUAL

CXCL9/MIG Antibody Pair [HRP] NBP2-79315

Sample Insert for reference use only

Matched Antibody Pair utilized in an Enzyme-linked Immunosorbent Assay for quantitative detection of Human CXCL9/MIG.

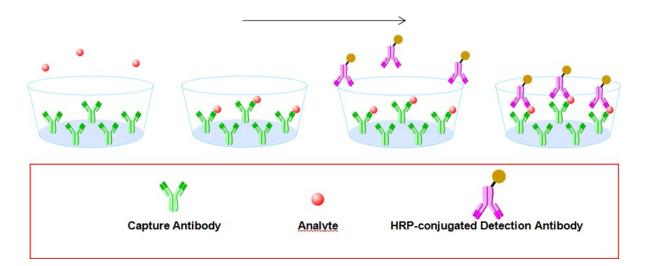
For research use only. Not for diagnostic or therapeutic procedures.

www.novusbio.com - P: 303.730.1950 - P: 888.506.6887 - F: 303.730.1966 - technical@novusbio.com

Novus kits are guaranteed for 6 months from date of receipt

BACKGROUND

Chemokine (C-X-C motif) ligand 9 (CXCL9), also known as Monokine induced by gamma interferon (MIG), is a small cytokine belonging to the CXC chemokine family. The function of this chemokine has not been specifically defined; however, it is thought to be involved in T cell trafficking. CXCL9/MIG functions as one of the three ligands of chemokine receptor CXCR3 which is a G protein-coupled receptor found predominantly on T cells. CXCL9/MIG, together with CXCL1 and CXCL11, may activate CXCR3 by binding to it. CXCL9 serves as a cytokine that affects the growth, movement, or activation state of cells that participate in immune and inflammatory response. It has been observed that tumour endothelial cells secrete high levels of CXCL9 in all, and CXCL1 in most melanoma metastases. Experiment data represent novel mechanisms by which tumour cells in melanoma metastases might use the chemokine-expressing endothelium to leave the tumour and eventually to form additional metastases at distinct sites. Experiment results also improved that CXCL9/MIG plays an important role in CD4+ T lymphocyte recruitment and development of CAV, MOMA-2+ macrophages are the predominant recipient-derived source of CXCL9/MIG, and recipient CD4 lymphocytes are necessary for sustained CXCL9/MIG may have therapeutic potential for the treatment of chronic rejection after hearttransplantation.


PRINCIPLE OF THE TEST

The Novus Biologicals CXCL9/MIG Antibody Pair [HRP] is a solid phase sandwich ELISA (Enzyme-Linked Immunosorbent Assay). It utilizes a monoclonal antibody specific for Human CXCL9/MIG coated on a 96-well plate. Standards and samples are added to the wells, and any Human CXCL9/MIG present binds to the immobilized antibody. The wells are washed and a horseradish peroxidase conjugated rabbit anti-Human CXCL9/MIG monoclonal antibody is then added, producing an antibody-antigen-antibody "sandwich". The wells are again washed and TMB substrate solution is loaded, which produces color in proportion to the amount of Human CXCL9/MIG present in the sample. To end the enzyme reaction, the stop solution is added and absorbances of the microwell are read at 450 nm.

INTENDED USE

- The Human CXCL9/MIG Antibody Pair [HRP] is for the quantitative determination of HumanCXCL9/MIG.
- This CXCL9/MIG Antibody Pair [HRP] contains the basic components required for the development of sandwich ELISAs.

ASSAY PROCEDURE SUMMARY

This antibody pair has been configured for research use only and is not to be used in diagnostic procedures.

MATERIALS PROVIDED

Bring all reagents to room temperature before use.

Capture Antibody – 0.5 mg/mL of mouse anti-Human CXCL9/MIG monoclonal antibody (in PBS, pH 7.4). Dilute to a working concentration of 0.5 µg/mL in PBS before coating.

Detection Antibody – 0.2 mg/mL of rabbit anti-Human CXCL9/MIG monoclonal antibody conjugated to horseradish-peroxidase (HRP) (in PBS, 50 % HRP-Protector, pH 7.4, store at 4° C). Dilute to working concentration of 0.15 µg/mL in Dilution Buffer before use.

Standard – Each vial contains 13 ng of recombinant Human CXCL9/MIG. Reconstitute with 1 mL Dilution Buffer. After reconstitution, store at -20 $^{\circ}$ C to -80 $^{\circ}$ C in a manual defrost freezer. A seven- point standard curve using 2-fold serial dilutions in Dilution Buffer, and a high standard of 600 pg/mL is recommended.

SOLUTIONS REQUIRED

PBS - 136.9 mM NaCl, 10.1 mM Na₂HPO₄, 2.7 mM KCl, 1.8 mM KH₂PO₄, pH 7.4, 0.2 µm

filtered

Wash Buffer - 0.05% Tween20 in PBS, pH 7.2 - 7.4

Blocking Buffer - 2% BSA in Wash Buffer

Dilution Buffer - 0.1% BSA in wash buffer, pH 7.2 - 7.4, 0.2 µm filtered

Substrate Solution : To achieve best assay results, fresh substrate solution is recommended

Substrate stock solution - 10mg / ml TMB (Tetramethylbenzidine) in DMSO

Substrate dilution buffer - $0.05M \text{ Na}_2\text{HPO}_4$ and 0.025M citric acid ; adjust pH to 5.5

Substrate working solution - For each plate dilute 250 µl substrate stock solution in 25ml

substrate dilution buffer and then add 80 μ l 0.75% H₂O₂, mix it well

Stop Solution - 2 N H₂SO₄

PRECAUTION

The Stop Solution suggested for use with this antibody pair is an acid solution. Wear eye, hand, face, and clothing protection when using this material.

STORAGE

Capture Antibody: Aliquot and store at -20 $^{\circ}$ C to -80 $^{\circ}$ C for up to 6 months from date of receipt. Avoid repeated freeze-thaw cycles.

Detection Antibody: Store at 4° C and protect it from prolonged exposure to light for up to 6 months from date of receipt. **DO NOT FREEZE!**

Standard: Store lyophilized standard at -20 $^{\circ}$ C to -80 $^{\circ}$ C for up to 6 months from date of receipt. Aliquot and store the reconstituted standard at -80 $^{\circ}$ C for up to 1 month. Avoid repeated freeze-thaw cycles.

ALTERNATIVE NAMES

CMK, crg-10, Humig, MIG, SCYB9

GENERAL ELISA PROTOCOL

Plate Preparation

1. Dilute the capture antibody to the working concentration in PBS. Immediately coat a 96-well microplate with 100 μ L per well of the diluted capture antibody. Seal the plate and incubate overnight at 4 °C.

2. Aspirate each well and wash with at least 300µl wash buffer, repeating the process two times for a total of three washes. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining wash buffer by inverting the plate and blotting it against clean paper towels. 3.Block plates by adding 300 µL of blocking buffer to each well. Incubate at room temperature for a minimum of 1 hour.

4.Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition.

Assay Procedure

1.Add 100 μ L of sample or standards in Dilution Buffer per well. Seal the plate and incubate 2 hours at room temperature.

2. Repeat the aspiration/wash as in step 2 of plate preparation.

3. Add 100 µL of the detection antibody, diluted in Dilution Buffer, to each well. Seal the plate and incubate

1 hour at room temperature.

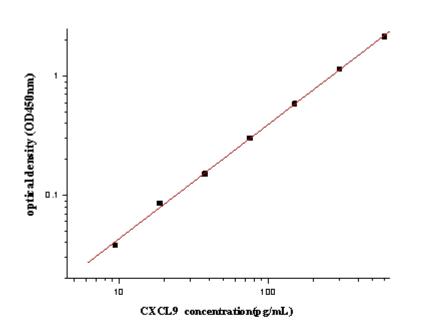
4. Repeat the aspiration/wash as in step 2 of plate preparation.

5. Add 200 μ L of substrate solution to each well. Incubate for 20 minutes at room temperature (**if substrate solution is not as requested, the incubation time should be optimized**). Avoid placing the plate in direct light.

6. Add 50 μ L of stop solution to each well. Gently tap the plate to ensure thorough mixing. 7. Determine the optical density of each well immediately, using a microplate reader set to 450 nm.

CALCULATION OF RESULTS

• Calculate the mean absorbance for each set of duplicate standards, controls and samples. Subtract the mean zero standard absorbance from each.


• Construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph.

•To determine the concentration of the unknowns, find the unknowns' mean absorbance value on the yaxis and draw a horizontal line to the standard curve. At the point of intersection, draw a vertical line to the x-axis and read the concentration. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

•Alternatively, computer-based curve-fitting statistical software may also be employed to calculate the concentration of the sample.

TYPICAL DATA

This standard curve is only for demonstration purposes. A standard curve should be generated for each assay.

Concentration (pg/mL)	Zero standard subtracted OD					
0	0					
9.375	0.038					
18.75	0.086					
37.5	0.151					
75	0.301					
150	0.585					
300	1.151					
600	2.153					

PERFORMANCE CHARACTERISTIC

SENSITIVITY

The minimum detectable dose of Human CXCL9/MIG was determined to be approximately **9.38 pg/ml**. This is defined as at least three times standard deviations above the mean optical density of 10 replicates of the zero standard.

TROUBLE SHOOTING

Problems	Possible Sources	Solutions			
	Incorrect or no Detection Antibody was added	Add appropriate Detection Antibody and continue			
No signal	Substrate solution was not added	Add substrate solution and continue			
	Incorrect storage condition	Check if the kit is stored at recommended condition and used before expiration date			
Poor Standard Curve	Standard was incompletely reconstituted or was inappropriately stored	Aliquot reconstituted standard and store at -80 $^\circ\!\mathrm{C}$			
	Imprecise / inaccurate pipetting	Check / calibrate pipettes			
	Incubations done at inappropriate temperature, timing or agitation	Follow the general ELISA protocol			
	Background wells were contaminated	Avoid cross contamination by using the sealer appropriately			
	The concentration of antigen in samples was too low	Enriching samples to increase the concentration of antigen			
Poor detection value	Samples were ineffective	Check if the samples are stored at cold environment. Detect samples in timely manner			
High Background		Use multichannel pipettes without touching the reagents on the plate			
	Insufficient washes	Increase cycles of washes and soaking time between washes			
	TMB Substrate Solution was contaminated	TMB Substrate Solution should be clear and colorless prior to addition to wells			
	Materials were contaminated.	Use clean plates, tubes and pipettes tips			
Non-specificity	Samples were contaminated	Avoid cross contamination of samples			
	The concentration of samples was too high	Try higher dilution rate of samples			

	ELISA Plate Template											
	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
Е												
F												
G												
Н												

Human CXCL9/MIG Antibody Pair [HRP] Notes