SIOLOGICALS a biotechne brand

PRODUCT INFORMATION & ELISA MANUAL

Cystatin C Antibody Pair [HRP] NBP2-79465

Sample Insert for reference use only

Matched Antibody Pair utilized in an Enzyme-linked Immunosorbent Assay for quantitative detection of Human Cystatin C.

For research use only. Not for diagnostic or therapeutic procedures.

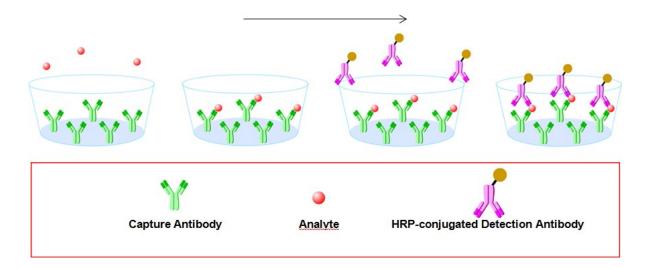
www.novusbio.com - P: 303.730.1950 - P: 888.506.6887 - F: 303.730.1966 - technical@novusbio.com

Novus kits are guaranteed for 6 months from date of receipt

BACKGROUND

Cystatin C, also known as Cystatin-3 (CST3) is a secreted type 2 cysteine protease inhibitor synthesized in all nucleated cells, has been proposed as a replacement for serum creatinine for the assessment of renal function, particularly to detect small reductions in glomerular filtration rate. The mature, active form of human cystatin C is a single non-glycosylated polypeptide chain consisting of 120 amino acid residues, with a molecular mass of 13,343-13,359 Da, and containing four characteristic disulfide-paired cysteine residues. Cystatin C is a low-molecular-weight protein which has been proposed as a marker of renal function that could replace creatinine. Indeed, the concentration of Cystatin C is mainly determined by glomerular filtration and is particularly of interest in clinical settings where the relationship between creatinine production and muscle mass impairs the clinical performance of creatinine. Since the last decade, numerous studies have evaluated its potential use in measuring renal function in various populations. More recently, other potential developments for its clinical use have emerged. In almost all the clinical studies, Cystatin C demonstrated a better diagnostic accuracy than serum creatinine in discriminating normal from impaired kidney function, but controversial results have been obtained by comparing this protein with other indices of kidney disease, especially serum creatinine-based equations, such as early atherosclerosis, Alzheimer's dementia, vascular aneurysms, hyperhomocysteinaemia and other neurodegenerative diseases. Cystatin C could be a useful clinical tool to identify HIV-infected persons. In addition, its expression is up-regulated in malignance of certain tumorprogression.

PRINCIPLE OF THE TEST


The Novus Biologicals Cystatin C Antibody Pair [HRP] is a solid phase sandwich ELISA (Enzyme-Linked Immunosorbent Assay). It utilizes a monoclonal antibody specific for Human Cystatin C coated on a 96-well plate. Standards and samples are added to the wells, and any Human Cystatin C present binds to the immobilized antibody. The wells are washed and a horseradish peroxidase conjugated mouse anti-Human Cystatin C monoclonal antibody is then added, producing an antibody-antigen-antibody "sandwich". The wells are again washed and TMB substrate solution is loaded, which produces color in proportion to the amount of Human Cystatin C present in the sample. To end the enzyme reaction, the stop solution is added and absorbances of the microwell are read at 450 nm.

INTENDED USE

◆ The Human Cystatin C Antibody Pair [HRP] is for the quantitative determination of Human Cystatin C / CST3.

 This Cystatin C Antibody Pair [HRP] contains the basic components required for the development of sandwich ELISAs.

ASSAY PROCEDURE SUMMARY

This antibody pair has been configured for research use only and is not to be used in diagnostic procedures.

MATERIALS PROVIDED

Bring all reagents to room temperature before use.

Capture Antibody – 1 mg/mL of mouse anti-Human Cystatin C monoclonal antibody (in PBS, pH 7.4). Dilute to a working concentration of 2 μ g/mL in PBS before coating.

Detection Antibody – 0.2 mg/mL of mouse anti-Human Cystatin C monoclonal antibody conjugated to horseradish-peroxidase (HRP) (in PBS, 50 % HRP-Protector, pH 7.4, store at 4°C). Dilute to working concentration of 0.8 μ g/mL in detection antibody dilution buffer before use.

Standard – Each vial contains 45 ng of recombinant Human Cystatin C. Reconstitute with 1 mL detection antibody dilution buffer. After reconstitution, store at -20° C to -80° C in a manual defrost freezer. A seven-point standard curve using 2-fold serial dilutions in sample dilution buffer, and a high standard of 500 pg/mL is recommended.

SOLUTIONS REQUIRED

PBS - 136.9 mM NaCl, 10.1 mM Na₂HPO₄, 2.7 mM KCl, 1.8 mM KH₂PO₄, pH 7.4, 0.2 μm filtered
TBS - 20 mM Tris, 150 mM NaCl, pH 7.4
Wash Buffer - 0.05% Tween20 in TBS, pH 7.2 - 7.4
Blocking Buffer - 2% BSA in Wash Buffer
Sample dilution buffer - 0.1% BSA in wash buffer, pH 7.2 - 7.4, 0.2 μm filtered
Detection antibody dilution buffer - 0.5% BSA in wash buffer, pH 7.2 - 7.4, 0.2 μm filtered
Substrate Solution : To achieve best assay results, fresh substrate solution is recommended
Substrate stock solution - 10mg / ml TMB (Tetramethylbenzidine) in DMSO
Substrate dilution buffer - 0.05M Na₂HPO₄ and 0.025M citric acid ; adjust pH to 5.5
Substrate working solution - For each plate dilute 250 μl substrate stock solution in 25ml

substrate dilution buffer and then add 80 μ l 0.75% H₂O₂, mix it well

Stop Solution - 2 N H₂SO₄

PRECAUTION

The Stop Solution suggested for use with this antibody pair is an acid solution. Wear eye, hand, face, and clothing protection when using this material.

STORAGE

Capture Antibody: Aliquot and store at -20 $^{\circ}$ C to -80 $^{\circ}$ C for up to 6 months from date of receipt. Avoid repeated freeze-thaw cycles.

Detection Antibody: Store at 4° C and protect it from prolonged exposure to light for up to 6 months from date of receipt. **DO NOT FREEZE!**

Standard: Store lyophilized standard at -20 $^{\circ}$ C to -80 $^{\circ}$ C for up to 6 months from date of receipt. Aliquot and store the reconstituted standard at -80 $^{\circ}$ C for up to 1 month. Avoid repeated freeze-thaw cycles.

GENERAL ELISA PROTOCOL

Plate Preparation

1. Dilute the capture antibody to the working concentration in PBS. Immediately coat a 96-well microplate with 100 μ L per well of the diluted capture antibody. Seal the plate and incubate overnight at 4 °C.

2. Aspirate each well and wash with at least 300µl wash buffer, repeating the process two times for a total of three washes. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining wash buffer by inverting the plate and blotting it against clean paper towels. 3.Block plates by adding 300 µL of blocking buffer to each well. Incubate at room temperature for a minimum of 1 hour.

4.Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition.

Assay Procedure

1.Add 100 μ L of sample or standards in sample dilution buffer per well. Seal the plate and incubate 2 hours at room temperature.

2. Repeat the aspiration/wash as in step 2 of plate preparation.

3. Add 100 µL of the detection antibody, diluted in antibody dilution buffer, to each well. Seal the plate and incubate 1 hour at room temperature.

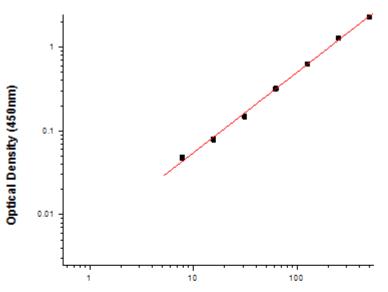
4. Repeat the aspiration/wash as in step 2 of plate preparation.

5. Add 200 μ L of substrate solution to each well. Incubate for 20 minutes at room temperature (**if substrate solution is not as requested, the incubation time should be optimized**). Avoid placing the plate in direct light.

6. Add 50 μ L of stop solution to each well. Gently tap the plate to ensure thorough mixing. 7. Determine the optical density of each well immediately, using a microplate reader set to 450 nm.

CALCULATION OF RESULTS

• Calculate the mean absorbance for each set of duplicate standards, controls and samples. Subtract the mean zero standard absorbance from each.


• Construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph.

•To determine the concentration of the unknowns, find the unknowns' mean absorbance value on the yaxis and draw a horizontal line to the standard curve. At the point of intersection, draw a vertical line to the x-axis and read the concentration. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

•Alternatively, computer-based curve-fitting statistical software may also be employed to calculate the concentration of the sample.

TYPICAL DATA

This standard curve is only for demonstration purposes. A standard curve should be generated for each assay.

CST3 Concentration (pg/mL)

Concentration (pg/mL)	Zero standard subtracted OD				
0	0				
7.81	0.048				
15.63	0.079				
31.25	0.148				
62.5	0.321				
125	0.627				
250	1.291				
500	2.301				

PERFORMANCE CHARACTERISTIC

SENSITIVITY

The minimum detectable dose of Human Cystatin C was determined to be approximately **7.8 pg/ml**. This is defined as at least three times standard deviations above the mean optical density of 10 replicates of the zero standard.

TROUBLE SHOOTING

Problems	Possible Sources	Solutions			
	Incorrect or no Detection Antibody was added	Add appropriate Detection Antibody and continue			
No signal	Substrate solution was not added	Add substrate solution and continue			
	Incorrect storage condition	Check if the kit is stored at recommended condition and used before expiration date			
	Standard was incompletely reconstituted or was inappropriately stored	Aliquot reconstituted standard and store at -80 $^\circ\!\!\mathbb{C}$			
Poor Standard	Imprecise / inaccurate pipetting	Check / calibrate pipettes			
Curve	Incubations done at inappropriate temperature, timing or agitation	Follow the general ELISA protocol			
	Background wells were contaminated	Avoid cross contamination by using the sealer appropriately			
	The concentration of antigen in samples was too low	Enriching samples to increase the concentration of antigen			
Poor detection value	Samples were ineffective	Check if the samples are stored at cold environment. Detect samples in timely manner			
		Use multichannel pipettes without touching the reagents on the plate			
High Background	Insufficient washes	Increase cycles of washes and soaking time between washes			
	TMB Substrate Solution was contaminated	TMB Substrate Solution should be clear and colorless prior to addition to wells			
	Materials were contaminated.	Use clean plates, tubes and pipettes tips			
Non-specificity	Samples were contaminated	Avoid cross contamination of samples			
	The concentration of samples was too high	Try higher dilution rate of samples			

	ELISA Plate Template											
	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
E												
F												
G												
Н												

Human Cystatin C Antibody Pair [HRP] Notes