

PRODUCT INFORMATION & ELISA MANUAL

Influenza A H5N1 Hemagglutinin Antibody Pair NBP3-12818

Sample Insert for reference use only

Matched Antibody Pair utilized in an Enzyme-linked Immunosorbent Assay for quantitative detection of Influenza A H5N1 Hemagglutinin.

For research use only.

Not for diagnostic or therapeutic procedures.

www.novusbio.com - P: 303.730.1950 - P: 888.506.6887 - F: 303.730.1966 - technical@novusbio.com

Novus kits are guaranteed for 6 months from date of receipt

BACKGROUND

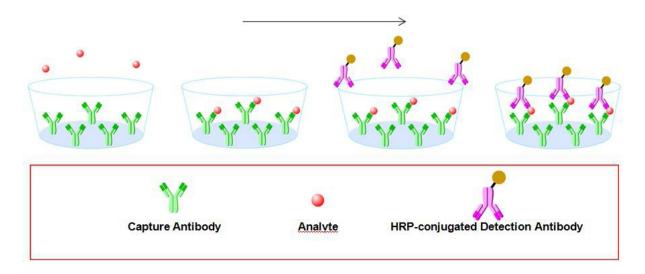
Influenza (flu) is a viral respiratory infection in mammals and birds. This virus is divided into three main types (A, B and C). Influenza A is found in a wide variety of mammalian and avian species and is associated with the major human pandemics. Influenza B is largely confined to humans and became unexpectedly prevalent in humans during 2000-2002. Influenza C infects humans, dogs and pigs and generally causes only mild upper respiratory tract infection. However, influenza A and B viruses cause a wide spectrum of severe disease including lower respiratory, tract infection, pneumonia and encephalitis. Influenza A is further divided into subtypes based on antigenic differences in the membrane proteins hemagglutinin (HA) and neuraminidase (NA). 16 HAs (H1-H16) and 9 NA (N1-N9) had been identified. While different combinations of the two antigens appear more frequently in some groups of birds than others, only few subtypes have established themselves in humans (HA:H1, H2, and H3; NA: N1 and N2).

Sustained, widespread highly pathogenic avian influenza (HPAI) H5N1 epidemics represent a significant public health hazard because they not only cause mortality in poultry but also increase the risk of a human influenza pandemic. In 1997, the first case of human infected H5N1 was reported in Hongkong, China. Avian influenza have broken the species barrier and made heavy threaten to human health. In the process of epidemic, more than 100 countries had found more than 400 human avian influenza infected cases, within 262 patients dead. Since two human-to-human transmission cases were reported in China, controlling the interspecies transmission of avian influenza is of critical importance.

At least 4 major antigenic groups of H5N1 viruses currently in circulation have caused infection in humans. The recent emergence and development of the unique antigenic FJ-like virus (clade 2.3.4) in Asia, the continuous circulation and expansion of Qinghai-like virus (clade 2.2) in Europe, the Middle East, and Africa, and the persistent prevalence of clade 2.1 viruses in Indonesia, and classic Clade 1 in Vietnam and Hong Kong.

Hemagglutinin (HA), which binds to sialic acid (SA)-containing receptors on host cells, is the protein that produces neutralizing antibodies. Hemagglutinin plays a major role in the determination of host range restriction and virulence because human influenza HA preferentially binds to SA- α -2,6 while avian influenza HA preferentially binds to SA- α -2,3. The cleavage of HA into two disulfide-linked subunits, HA1 and HA2, is a prerequisite for initiating infection. Usually HA is restricted to be cleaved at respiratory tracts by limited proteases. Highly pathogenic avian influenza contains a stretch of basic residues adjacent to the HA cleavage site, enabling its HA to be cleaved by a wide range of proteases with ubiquitous tissue distributions. This process permits productive virus replication in organs outside of the respiratory and gastrointestinal tracts, including the brain, resulting in widespread disease and high mortality rates.

PRINCIPLE OF THE TEST


The Influenza A H5N1 Hemagglutinin Antibody Pair is for the quantitative determination of H5N1 (avian flu) hemagglutinin.

The Novus Biologicals ELISA Influenza A H5N1 Hemagglutinin Antibody Pair is a solid phase sandwich ELISA (Enzyme-Linked Immunosorbent Assay). It utilizes a monoclonal antibody specific for H5N1 (avian flu) hemagglutinin coated on a 96-wellplate. Standards and samples are added to the wells, and any H5N1 (avian flu) hemagglutinin present binds to the immobilized antibody. The wells are washed and a horseradish peroxidase conjugated mouse anti-H5N1 (avian flu) hemagglutinin monoclonal antibody is then added, producing an antibody- antigen-antibody ""sandwich"". The wells are again washed and TMB substrate solution is loaded, whichproduces color in proportion to the amount of H5N1 (avian flu) hemagglutinin present in the sample. To end the enzyme reaction, the stop solution is added and absorbances of the microwell are read at 450 nm.

INTENDED USE

- ◆The Influenza A H5N1 Hemagglutinin Antibody Pair is for the quantitative determination of hemagglutinin.
- ◆ This antibody pair contains the basic components required for the development of sandwich ELISAs.

ASSAY PROCEDURE SUMMARY

This antibody pair has been configured for research use only and is not to be used in diagnostic procedures.

MATERIALS PROVIDED

Bring all reagents to room temperature before use.

Capture Antibody – 1 mg/mL of mouse anti-H5N1 hemagglutinin monoclonal antibody. Dilute to a working concentration of 2 μ g/mL in PBS before coating.

Detection Antibody - 0.2 mg/mL biotinylated rabbit anti-H5N1 hemagglutinin polyclonal antibody. Dilute to a working concentration of 0.8 μ g/mL in detection antibody dilution buffer before use.

Standard – Each vial contains 300 ng of recombinant H5N1 hemagglutinin. Reconstitute with 1 mL detection antibody dilution buffer. A seven-point standard curve using 2-fold serial dilutions in sample dilution buffer, and a high standard of 8000 pg/mL is recommended.

SOLUTIONS REQUIRED

PBS - 136.9 mM NaCl, 10.1 mM Na₂HPO₄, 2.7 mM KCl, 1.8 mM KH₂PO₄, pH 7.4, 0.2 μ m filtered

Wash Buffer - 0.05% Tween20 in PBS, pH 7.2 - 7.4

Blocking Buffer - 2% BSA in Wash Buffer

Dilution Buffer - 0.1% BSA in wash buffer, pH 7.2 - 7.4, 0.2 µm filtered

Substrate Solution: To achieve best assay results, fresh substrate solution is recommended

Substrate stock solution - 10mg / ml TMB (Tetramethylbenzidine) in DMSO

Substrate dilution buffer - 0.05M Na₂HPO₄ and 0.025M citric acid; adjust pH to 5.5

Substrate working solution - For each plate dilute 250 μ l substrate stock solution in 25ml substrate dilution buffer and then add 80 μ l 0.75% H_2O_2 , mix it well

Stop Solution - 2 N H₂SO₄

PRECAUTION

The Stop Solution suggested for use with this antibody pair is an acid solution. Wear eye, hand, face, and clothing protection when using this material.

STORAGE

Capture Antibody: Aliquot and store at -20°C to -80°C for up to 6 months from date of receipt. Avoid repeated freeze-thaw cycles.

Detection Antibody: Store at 4°C and protect it from prolonged exposure to light for up to 6 months from date of receipt. **DO NOT FREEZE!**

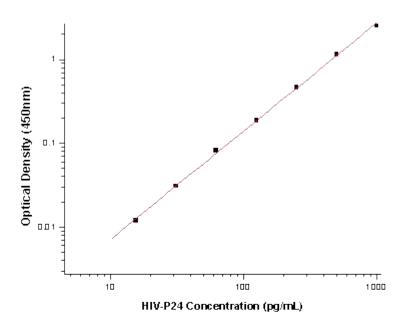
Standard: Store lyophilized standard at -20°C to -80°C for up to 6 months from date of receipt. Aliquot and store the reconstituted standard at -80°C for up to 1 month. Avoid repeated freeze-thaw cycles.

GENERAL ELISA PROTOCOL

Plate Preparation

- 1. Dilute the capture antibody to the working concentration in PBS. Immediately coat a 96-well microplate with 100µL per well of the diluted capture antibody. Seal the plate and incubate overnight at 4°C.
- 2. Aspirate each well and wash with at least 300µl wash buffer, repeating the process two times for a total of three washes. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining wash buffer by inverting the plate and blotting it against clean paper towels.
- 3. Block plates by adding 300 µL of blocking buffer to each well. Incubate at room temperature for a minimum of 1 hour.
- 4. Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition.

Assay Procedure


- 1. Add 100 μL of sample or standards in Dilution Buffer per well. Seal the plate and incubate 2 hours at room temperature.
- 2. Repeat the aspiration/wash as in step 2 of plate preparation.
- 3. Add 100 μ L of the detection antibody, diluted in Dilution Buffer, to each well. Seal the plate and incubate 1 hour at room temperature.
- 4. Repeat the aspiration/wash as in step 2 of plate preparation.
- 5. Add 200 µL of substrate solution to each well. Incubate for 20 minutes at room temperature (if substrate solution is not as requested, the incubation time should be optimized). Avoid placing the plate in direct light.
- 6. Add 50 µL of stop solution to each well. Gently tap the plate to ensure thorough mixing.
- 7. Determine the optical density of each well immediately, using a microplate reader set to 450 nm.

CALCULATION OF RESULTS

- Calculate the mean absorbance for each set of duplicate standards, controls and samples. Subtract the mean zero standard absorbance from each.
- Construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph.
- To determine the concentration of the unknowns, find the unknowns' mean absorbance value on the y-axis and draw a horizontal line to the standard curve. At the point of intersection, draw a vertical line to the x-axis and read the concentration. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.
- Alternatively, computer-based curve-fitting statistical software may also be employed to calculate the concentration of the sample.

TYPICAL DATA

This standard curve is only for demonstration purposes. A standard curve should be generated for each assay.

Concentration (pg/mL)	Zero standard subtracted OD					
0	0					
15.63	0.012					
31.25	0.031					
62.5	0.082					
125	0.187					
250	0.461					
500	1.157					
1000	2.525					

PERFORMANCE CHARACTERISTIC

SENSITIVITY

The minimum detectable dose of H5N1 hemagglutinin (HA) was determined to be approximately 125 pg/ml. This is defined as at least three times standard deviations above the mean optical density of 10 replicates of the zero standard.

TROUBLE SHOOTING

Problems	Possible Sources	Solutions			
	Incorrect or no Detection Antibody was added	Add appropriate Detection Antibody and continue			
No signal	Substrate solution was not added	Add substrate solution and continue			
	Incorrect storage condition	Check if the kit is stored at recommended condition and used before expiration date			
Poor Standard Curve	Standard was incompletely reconstituted or was inappropriately stored	Aliquot reconstituted standard and store at -80 °C			
	Imprecise / inaccurate pipetting	Check / calibrate pipettes			
	Incubations done at inappropriate temperature, timing or agitation	Follow the general ELISA protocol			
	Background wells were contaminated	Avoid cross contamination by using the sealer appropriately			
	The concentration of antigen in samples was too low	Enriching samples to increase the concentration of antigen			
Poor detection value	Samples were ineffective	Check if the samples are stored at cold environment. Detect samples in timely manner			
High Background	Insufficient washes	Use multichannel pipettes without touching the reagents on the plate			
	insunicient wasnes	Increase cycles of washes and soaking time between washes			
	TMB Substrate Solution was contaminated	TMB Substrate Solution should be clear and colorless prior to addition to wells			
	Materials were contaminated.	Use clean plates, tubes and pipettes tips			
Non-specificity	Samples were contaminated	Avoid cross contamination of samples			
Hon-opcomony	The concentration of samples was too high	Try higher dilution rate of samples			

	ELISA Plate Template											
	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
E												
F												
G												
Н												

Influenza A H5N1 Hemagglutinin Antibody Pair Notes