

PRODUCT INFORMATION & MANUAL

Nitric Oxide Assay Kit (Colorimetric) NBP3-24526

For research use only.

Not for diagnostic or therapeutic procedures.

www.novusbio.com - P: 303.730.1950 - P: 888.506.6887 - F: 303.730.1966 - technical@novusbio.com

Novus kits are guaranteed for 6 months from date of receipt

Nitric Oxide Assay Kit (Colorimetric)

Catalog No: NBP3-24526

Method: Colorimetric method

Specification: 100 Assays (Can detect 96 samples without duplication)

Instrument: Spectrophotometer

Sensitivity: 0.97 µmol/L

Detection range: 0.97-700 µmol/L

Average intra-assay CV (%): 3.4

Average inter-assay CV (%): 5.2

Average recovery rate (%): 99

- ▲ This kit is for research use only.
- ▲ Instructions should be followed strictly, changes of operation may result in unreliable results.
- ▲ Please kindly provide us the lot number (on the outside of the box) of the kit for more efficient service.

General information

▲ Intended use

This kit can be used for detection of nitric oxide (NO) in serum, plasma, saliva, animal and plant tissue samples.

▲ Background

NO is a kind of highly reactive free radical, which has the function of the second messenger and neurotransmitter, and it is also a kind of effector molecule, which has a wide range of physiological functions in vivo, such as relax vascular smooth muscle, regulate cerebral blood flow, mediate cytotoxic effect and immune regulation, participate in learning and memory, etc. Half life of NO is very short. NO in blood is mainly produced by vascular endothelial cells, vascular smooth muscle cells, platelets, macrophages and so on. It exists in the form of nitrate and nitrite, and the concentration of NO can calculate indirectly by the concentration of nitrate and nitrite.

▲ Detection principle

NO is easily oxidized to form NO₂⁻ in vivo or in aqueous solution, and a reddish azo compound is formed with the color developing agent, and the concentration of the azo compound is linearly related to the concentration of NO. The concentration of NO can be calculated indirectly by measuring the OD value at 550 nm.

$$NO_2$$
 + R_1 N^{-1} R_2 R_3 R_4 R_5 R_7 R_7 R_7

▲ Kit components & storage

Item	Component	Specification	Storage
Reagent 1	Sulphate Solution	50 mL × 4 vials	2-8°C , 12 months
Reagent 2	Alkali Reagent	50 mL × 2 vials	2-8°C , 12 months
Reagent 3	Chromogenic Agent A	38 mL × 1 vial	2-8°C , 12 months, shading light
Reagent 4	Chromogenic Agent B	Powder × 1 vial	2-8°C , 12 months, shading light
Reagent 5	Acid Solution	25 mL × 1 vial	2-8°C , 12 months
Reagent 6	Sodium Nitrite Standard	Powder × 2 vials	-20°C , 12 months

Note: The reagents must be stored strictly according to the preservation conditions in the above table. The reagents in different kits cannot be mixed with each other.

▲ Materials prepared by users

≤ Instruments

Spectrophotometer (550 nm), Vortex mixer, Centrifuge, Analytical Balance, Micropipettor

Reagents:

Double distilled water, Normal saline (0.9% NaCl), PBS (0.01 M, pH 7.4)

▲ Safety data

Some of the reagents in the kit contain dangerous substances. It should be avoided to touch the skin and clothing. Wash immediately with plenty of water if touching it carelessly. All the samples and waste material should be treated according to the relevant rules of laboratory's biosafety.

▲ Precautions

Before the experiment, please read the instructions carefully, and wear gloves and work clothes.

▲ The key points of the assay

- 1. It is recommended to use a disposable plastic tube or glass tube must be washed clean.
- 2. Hemolysis and turbid serum have an effect on the results of the experiment.
- 3. Serum samples can be stored for 3 days at 4°C and for a month at -20°C.
- 4. The supernatant for chromogenic reaction should not contain sediment, otherwise it will affect the results.

Pre-assay preparation

▲ Reagent preparation

1. If there is any crystal precipitation in reagent 3, please dissolve it fully with water bath at above 60°C before use.

2. Preparation of reagent 4 working solution

Dissolve a vial of reagent 4 with 37.5 mL of double distilled water fully. The prepared solution can be stored at 4°C for 2 months with shading light. If the reagents appear darkened color, it should be abandon. It is recommended to prepare the needed amount and the concentration is 1.5 mg/mL.

3. Preparation of chromogenic reagent

Mix the reagent 3, reagent 4 working solution and reagent 5 at a ratio of 3:3:2 fully. Prepare the fresh solution before use and it can't be used when its color gets darker.

4. Preparation of 2 mmol/L standard solution

Dissolve the reagent 6 with 2 mL of distilled water. Prepare the fresh solution before use.

5. Preparation of 40 µmol/L sodium nitrite standard solution

Dilute the 2 mmol/L standard solution with distilled water at a ratio of 1:49 and mix fully. Prepare the fresh solution before use.

▲ Sample preparation

The samples should be prepared as conventional methods. Also please refer to appendix II.

▲ Dilution of sample

It is recommended to take 2~3 samples with expected large difference to do pre-experiment before formal experiment and dilute the sample according to the result of the pre-experiment and the detection range (0.97-700 µmol/L).

The recommended dilution factor for different samples is as follows (for reference only)

Sample type	Dilution factor	
Human serum	1	
Human plasma	1	
10% Mouse liver tissue homogenization	1	
Rat serum	1	
Rat plasma	1	
10% Epipremnum aureum tissue homogenization	1	

Note: The diluent is double distilled water, normal saline (0.9% NaCl) or PBS (0.01 M, pH 7.4).

Assay protocol

▲ Detailed operation steps

mL EP tubes.

(1) Blank tube: Take a* mL of double distilled water to 1.5 mL EP tubes.

Standard tubes: Take a* mL of 40 µmol/L sodium nitrite standard solution to 1.5

Sample tubes: Take a* mL of sample to 1.5 mL EP tubes.

Note: a* = Sample volume= Standard volume.

For serum or plasma samples, a* is 0.2-0.3 mL.

For tissue, a* is 0.1-0.3 mL.

- (2) Add 1.6 mL of reagent 1 and mix fully with a vortex mixer.
- (3) Add 0.8 mL of reagent 2 and mix fully with a vortex mixer.
- (4) Stand for 15 min at room temperature, centrifuge at 3100 g for 10 min. (If there is precipitate in the supernatant, please transfer the supernatant to a new EP tube and centrifuge again.)
- (5) Take 1.6 mL of supernatant to the corresponding tubes for chromogenic reaction.
- (6) Add 0.8 mL of chromogenic reagent to each tube, mix fully and stand at room temperature for 20 min.
- (7) Set the spectrophotometer to zero with double distilled water and measure the OD values of each tube at 550 nm with 1 cm optical path cuvette.

▲ Summary operation table

1. Pre-treatment

	Blank tube	Standard tube	Sample tube
Double distilled water (mL)	a*		
40 µmol/L sodium nitrite standard solution (mL)		a*	
Sample (mL)			a*
Reagent 1 (mL)	1.6	1.6	1.6
Reagent 2 (mL)	0.8	0.8	0.8

Mix fully and stand for 15 min, centrifuge at 3100 g for 10 min, take the supernatant for chromogenic reaction.

2. Chromogenic reaction

	Blank tube	Standard tube	Sample tube
Supernatant (mL)	1.6	1.6	1.6
Chromogenic reagent (mL)	0.8	0.8	0.8

Mix fully and stand at room temperature for 20 min. Set the spectrophotometer to zero and measure the OD values of each tube.

▲ Calculation

1. Serum (plasma):

$$\frac{\text{NO content}}{(\mu \text{mol/L})} = \frac{\Delta A_1}{\Delta A_2} \times c \times f$$

2. Tissue:

$$\underbrace{\text{N} \bullet \text{ content}}_{(\mu \text{mol/gprot})} = \underbrace{\frac{\Delta A_1}{\Delta A_2}} \times c \times f \div C_{pr}$$

Note:

 $\Delta A_1 : OD_{Sample} - OD_{Blank}$

 ΔA_2 : $OD_{Standard} - OD_{Blank}$

c: Concentration of sodium nitrite, 40 µmol/L.

f: Dilution factor of sample before test.

 $C_{\mbox{\tiny pr}}\!\!:$ Concentration of protein in sample, gprot/L.

Appendix I Data

▲ Example analysis

Take 0.3 mL of 10% mouse liver tissue homogenate, carry the assay according to the operation table.

The results are as follows:

The average OD value of the sample is 0.010, the average OD value of the blank is 0.004, the average OD value of the standard is 0.065, the concentration of protein in sample is 8.65 gprot/L, and the calculation result is:

NO content(μ mol/gprot)=(0.010-0.004)÷(0.065-0.004) ×40÷8.65 = 0.45 μ mol/gprot

Appendix II Sample preparation

The following sample pretreatment methods are for reference only.

▲ Serum

Collect fresh blood and stand at 25°C for 30 min to clot the blood. Then centrifuge at 2000 g for 15 min at 4°C. Take the serum (which is the upper light yellow clarified liquid layer) to preserve it on ice for detection.

▲ Plasma

Take fresh blood into the tube which has anticoagulant, centrifuge at 1000-2000 g for 10 min at 4° C. Take the plasma (which is the upper light yellow clarified liquid layer, don't take white blood cells and platelets in the middle layer) to preserve it on ice for detection.

▲ Tissue sample

Take 0.02-1g fresh tissue to wash with PBS (0.01 M, pH 7.4) at 2-8 $^{\circ}$ C . Absorb the water with filter paper and weigh. Homogenize at the ratio of the volume of homogenized medium (2-8 $^{\circ}$ C) (mL): the weight of the tissue (g) =9:1, then centrifuge the tissue homogenate for 10 min at 10000 g at 4 $^{\circ}$ C . Take the supernatant to preserve it on ice for detection. Meanwhile, determine the protein concentration of supernatant.

▲ Saliva

Gargle with clear water, collect the saliva 30 min later, centrifuge at 10000 g for 10 min at 4° C . Take the supernatant and preserve it on ice for detection.

Note:

- 1. Homogenized medium: PBS (0.01 M, pH 7.4).
- 2. Homogenized method:
- (1) Hand-operated: Weigh the tissue and mince to small pieces (1 mm³), then put the tissues pieces to glass homogenized tube. Add homogenized medium into homogenized tube, place the tube into the ice bath with left hand, and insert the glass tamping rod vertically into the homogenized tube with the right hand to grind up and down for 6-8 min.
 - Or put the tissue into the mortar, and add liquid nitrogen to grind fully. Then add the homogenized medium to homogenize.
- (2) Mechanical homogenate: Weigh the tissue to EP tube, add the homogenized medium to homogenize the tissue with homogenizer instrument (60 Hz, 90s) in the ice bath. (For samples of skin, muscle and plant tissue, the time of homogenization can be properly prolonged.)

Appendix III References

- 1. Davis K L, Martin E, Turko I V, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol, 2001, 41(1): 203-236.
- 2. Sun J, Zhang X, Broderick M, Fein H. Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensor, 2003, 3(8): 276-284.