

Product Information & ELISA Manual

Human alpha 2-Macroglobulin ELISA Kit (Colorimetric) NBP3-18793

Enzyme-linked Immunosorbent Assay for quantitative detection.

Contact

Intended use

This ELISA kit applies to the in vitro quantitative determination of Human alpha 2-Macroglobulin concentrations in serum, plasma and other biological fluids.

Character

Item		
Sensitivity	37.5 ng/mL	
Detection Range	62.5-4000 ng/mL	
Specificity	This kit recognizes Human alpha 2-Macroglobulin in samples. No significant cross-reactivity or interference between Human alpha 2-Macroglobulin and analogues was observed	
Repeatability	Coefficient of variation is < 10%	

Test principle

This ELISA kit uses the Sandwich-ELISA principle. The micro ELISA plate provided in this kit has been pre-coated with an antibody specific to Human alpha 2-Macroglobulin. Samples (or Standards) are added to the micro ELISA plate wells and combined with the specific antibody. Then a biotinylated detection antibody specific for Human alpha 2-Macroglobulin and Avidin- Horseradish Peroxidase (HRP) conjugate are added successively to each micro plate well and incubated. Free components are washed away. The substrate solution is added to each well. Only those wells that contain Human alpha 2-Macroglobulin, biotinylated detection antibody and Avidin-HRP conjugate will appear blue in color. The enzyme-substrate reaction is terminated by the addition of stop solution and the color turns yellow. The optical density (OD) is measured spectrophotometrically at a wavelength of 450 ±2 nm. The OD value is proportional to the concentration of Human alpha 2-Macroglobulin. You can calculate the concentration of Human alpha 2-Macroglobulin in the samples by comparing the OD of the samples to the standard curve.

Kit components & Storage

An unopened kit can be stored at 2-8°C for 12 months. After opening, store the items separately according to the following conditions.

Item	Specifications	Storage	
Micro ELISA Plate (Dismountable)	8 wells ×12 strips		
Reference Standard	2 vials	-20°C, 12 months	
Concentrated Biotinylated Detection Ab(100×)	1 vial, 120 μL		
Concentrated HRP Conjugate (100×)	1 vial, 120 μL	-20°C (Protect from light), 12 months	
Reference Standard & Sample Diluent	3 vials, 20 mL		
Biotinylated Detection Ab Diluent	1 vial, 14 mL	2.8°C 12 months	
HRP Conjugate Diluent	1 vial, 14 mL	2-8°C, 12 months	
Concentrated Wash Buffer(25×)	1 vial, 30 mL		
Substrate Reagent	1 vial, 10 mL	2-8°C (Protect from light)	
Stop Solution	1 vial, 10 mL	2-8°C	
Plate Sealer	5 pieces		
Product Manual	1 copy		

Note: All reagent bottle caps must be tightened to prevent evaporation and microbial pollution. The volume of reagents in partial shipments is a little more than the volume marked on the label, please use accurate measuring equipment instead of directly pouring into the vial(s).

Other supplies required

Microplate reader with 450 nm wavelength filter
High-precision transfer pipette, EP tubes and disposable pipette tips
Incubator capable of maintaining 37°C
Deionized or distilled water
Absorbent paper
Loading slot

Sample collection

Serum: Allow samples to clot for 1 hour at room temperature or overnight at 2-8 °C before centrifugation for 20 min at 1000×g at 2-8 °C. Collect the supernatant to carry out the assay. **Plasma:** Collect plasma using EDTA-Na₂ as an anticoagulant. Centrifuge samples for 15 min at 1000×g at 2-8 °C within 30 min of collection. Collect the supernatant to carry out the assay.

Tissue homogenates: It is recommended to get detailed references from the literature before analyzing different tissue types. For general information, hemolyzed blood may affect the results, so the tissues should be minced into small pieces and rinsed in ice-cold PBS (0.01M, pH=7.4) to remove excess blood thoroughly. Tissue pieces should be weighed and then homogenized in PBS (tissue weight (g): PBS (mL) volume=1:9) with a glass homogenizer on ice. To further break down the cells, you can sonicate the suspension with an ultrasonic cell disrupter or subject it to freeze-thaw cycles. The homogenates are then centrifuged for 5-10 min at $5000 \times g$ at 2-8°C to get the supernatant. **Cell lysates:** For adherent cells, gently wash the cells with moderate amount of pre-cooled PBS and dissociate the cells using trypsin. Collect the cell suspension into a centrifuge tube and centrifuge for 5 min at $1000 \times g$. Discard the medium and wash the cells 3 times with pre-cooled PBS. For each 1×10^6 cells, add 150-250 µL of pre-cooled PBS to keep the cells suspended. Repeat the freeze-thaw process several times or use an ultrasonic cell disrupter until the cells are fully lysed. Centrifuge for 10 min at $1500 \times g$ at 2-8°C. Remove the cell fragments, collect the supernatant to carry out the assay.

Cell culture supernatant or other biological fluids: Centrifuge samples for 20 min at $1000 \times g$ at 2-8 °C. Collect the supernatant to carry out the assay.

Recommended reagents for sample preparation: $10 \times EDTA$ Anticoagulant , PMSF Protease Inhibitor , 0.25% Trypsin Solution .

Note

■ Note for kit

- 1) For research use only. Not for use in diagnostic procedures.
- 2) Please wear lab coats, eye protection and latex gloves for protection. Please perform the experiment following the national security protocols of biological laboratories, especially when detecting blood samples or other bodily fluids.
- 3) A freshly opened ELISA plate may appear a water-like substance, which is normal and will not have any impact on the experimental results. Return the unused wells to the foil pouch and store according to the conditions suggested in the above table.
- 4) Do not reuse the reconstituted standard, biotinylated detection Ab working solution, HRP conjugate working solution. The unspent undiluted concentrated biotinylated detection Ab (100×) and other stock solutions should be stored according to the storage conditions in the above table.
- 5) The microplate reader should be able to be installed with a filter that can detect the wave length at 450 ± 2 nm. The optical density should be within 0-3.5. Follow the Instructions of the Microplate Reader for set-up and preheat it for 15 min before OD measurement.
- 6) Do not mix or substitute reagents with those from other lots or sources.
- 7) Change pipette tips in between adding of each standard level, between sample adding and between reagent adding. Also, use separate reservoirs for each reagent.
- 8) The kit should not be used beyond the expiration date on the kit label.

■ Note for sample

- 1) Tubes for blood collection should be disposable and be non-endotoxin. Samples with high hemolysis or much lipid are not suitable for ELISA assay.
- 2) Samples should be assayed within 7 days when stored at $2-8^{\circ}$ C, otherwise samples must be divided up and stored at -20° C (≤ 1 month) or -80° C (≤ 3 months). Avoid repeated freeze-thaw cycles. Prior to assay, the frozen samples should be slowly thawed and centrifuged to remove precipitates.
- 3) Please predict the concentration before assaying. If the sample concentration is not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments.
- 4) If the sample type is not included in the manual, a preliminary experiment is suggested to verify the validity.
- 5) If a lysis buffer is used to prepare tissue homogenates or cell lysates, there is a possibility of causing a deviation due to the introduced chemical substance.
- 6) Some recombinant protein may not be detected due to a mismatching with the coated antibody or detection antibody.

Dilution method

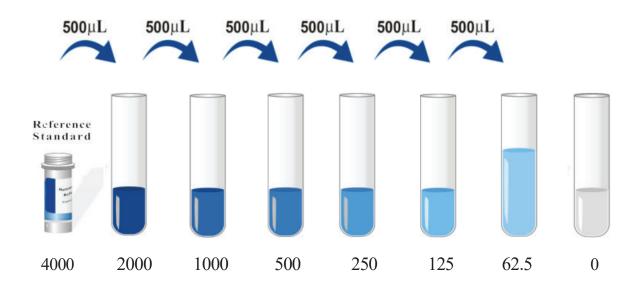
It is suggested to dilute normal serum/plasma samples at 1000~5000 fold.

Due to individual differences, please estimate the concentration range of the sample in advance, and conduct a preliminary test to determine the appropriate dilution ratio of the sample.

If your test sample needs dilution, please refer to the dilution method as follows:

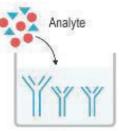
For 100 fold dilution: One-step dilution. Add 5 μ L sample to 495 μ L sample diluent to yield 100 fold dilution.

For 1000 fold dilution: Two-step dilution. Add 5 μ L sample to 95 μ L sample diluent to yield 20 fold dilution, then add 5 μ L 20 fold diluted sample to 245 μ L sample diluent, after this, the neat sample has been diluted at 1000 fold successfully.

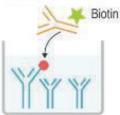

For 100000 fold dilution: Three-step dilution. Add 5 μ L sample to 195 μ L sample diluent to yield 40 fold dilution, then add 5 μ L 40 fold diluted sample to 245 μ L sample diluent to yield 50 fold dilution, and finally add 5 μ L 2000 fold diluted sample to 245 μ L sample diluent, after this, the neat sample has been diluted at 100000 fold successfully.

Reagent preparation

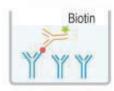
- 1. Bring all reagents to room temperature (18-25°C) before use. If the kit will not be used up in one assay, please only take out the necessary strips and reagents for present experiment, and store the remaining strips and reagents at required condition.
- 2. **Wash Buffer:** Dilute 30 mL of Concentrated Wash Buffer with 720 mL of deionized or distilled water to prepare 750 mL of Wash Buffer. Note: if crystals have formed in the concentrate, warm it in a 40°C water bath and mix it gently until the crystals have completely dissolved.
- 3. **Standard working solution:** Centrifuge the standard at 10,000×g for 1 min. Add 1mL of Reference Standard &Sample Diluent, let it stand for 10 min and invert it gently several times. After it dissolves fully, mix it thoroughly with a pipette. This reconstitution produces a working solution of 4000 ng/mL (or add 1 mL of Reference Standard &Sample Diluent, let it stand for 1-2 min and then mix it thoroughly with a vortex meter of low speed. Bubbles generated during vortex could be removed by centrifuging at a relatively low speed). Then make serial dilutions as needed. The recommended dilution gradient is as follows: 4000、2000、1000、500、250、125、62.5、0 ng/mL.

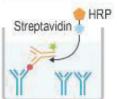

Dilution method: Take 7 EP tubes, add 500 μ L of Reference Standard & Sample Diluent to each tube. Pipette 500 μ L of the 4000 ng/mL working solution to the first tube and mix up to produce a 2000 ng/mL working solution. Pipette 500 μ L of the solution from the former tube into the latter one according to this step. The illustration on the next page is for reference. Note: the last tube is regarded as a blank. Don't pipette

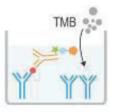
solution into it from the former tube. Gradient diluted standard working solution should be prepared just before use.



- 4. **Biotinylated Detection Ab working solution**: Calculate the required amount before the experiment (100 μL/well). In preparation, slightly more than calculated should be prepared. Centrifuge the Concentrated Biotinylated Detection Ab at 800×g for 1 min, then dilute the 100×Concentrated Biotinylated Detection Ab to 1× working solution with Biotinylated Detection Ab Diluent (Concentrated Biotinylated Detection Ab: Biotinylated Detection Ab Diluent= 1: 99). The working solution should be prepared just before use.
- 5. **HRP Conjugate working solution:** HRP Conjugate is HRP conjugated avidin. Calculate the required amount before the experiment (100 μL/well). In preparation, slightly more than calculated should be prepared. Centrifuge the Concentrated HRP Conjugate at 800×g for 1 min, then dilute the 100×Concentrated HRP Conjugate to 1× working solution with HRP Conjugate Diluent (Concentrated HRP Conjugate: HRP Conjugate Diluent= 1: 99). The working solution should be prepared just before use.


Assay Procedure Summary


Add 100µL standard or sample to the wells.
 Incubate for 90 min at 37°C


2. Discard the liquid, immediately add 100µL Biotinylated Detection Ab working solution to each well. Incubate for 60 min at 37°C

3. Aspirate and wash the plate for 3 times

 Add 100µL HRP conjugate working solution.
 Incubate for 30 min at 37°C. Aspirate and wash the plate for 5 times

 Add 90µL Substrate Reagent. Incubate for 15 min at 37°C

6. Add 50µL Stop Solution

7. Read the plate at 450nm immediately. Calculation of the results

Calculation of results

Average the duplicate readings for each standard and samples, then subtract the average zero standard optical density. Plot a four parameter logistic curve on log-log graph paper, with standard concentration on the x-axis and OD values on the y-axis.

If the OD of the sample surpasses the upper limit of the standard curve, you should re-test it with an appropriate dilution. The actual concentration is the calculated concentration multiplied by the dilution factor.

Typical data

As the OD values of the standard curve may vary according to the conditions of the actual assay performance (e.g. operator, pipetting technique, washing technique or temperature effects), the operator should establish a standard curve for each test. Typical standard curve and data is provided below for reference only.

ng/mL	OD	Corrected OD	Standard Curve
4000	2.498	2.438	10 ¬
2000	1.653	1.593	
1000	0.964	0.904	1-
500	0.47	0.41	Optical Density
250	0.262	0.202	0.1-
125	0.18	0.12	0.01
62.5	0.12	0.06	Human α 2-M concentration(ng/mL)
0	0.06	-	

Performance

Precision

Intra-assay Precision (Precision within an assay): 3 samples with low, mid range and high level Human alpha 2-Macroglobulin were tested 20 times on one plate, respectively.

Inter-assay Precision (Precision between assays): 3 samples with low, mid range and high level Human alpha 2-Macroglobulin were tested on 3 different plates, 20 replicates in each plate, respectively.

	Intra-assay Precision			Inter-assay Precision		
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
Mean(ng/mL)	168.88	485.91	1661.69	163.4	475.24	1927.63
Standard deviation	9	23.47	75.11	8.2	21.96	87.71
CV (%)	5.33	4.83	4.52	5.02	4.62	4.55

■ Recovery

The recovery of Human alpha 2-Macroglobulin spiked at three different levels in samples throughout the range of the assay was evaluated in various matrices.

Sample Type	Range (%)	Average Recovery (%)
Serum (n=8)	101-112	105
EDTA plasma (n=8)	90-105	98
Cell culture media(n=8)	101-108	105

■ Linearity

Samples were spiked with high concentrations of Human alpha 2-Macroglobulin and diluted with Reference Standard & Sample Diluent to produce samples with values within the range of the assay.

		Serum (n=5)	EDTA plasma (n=5)	Cell culture media(n=5)
1:2	Range (%)	83-93	99-109	82-95
1.2	Average (%)	90	105	90
1:4	Range (%)	88-100	87-101	88-98
1:4	Average (%)	96	94	95
1:8	Range (%)	93-103	84-96	93-105
	Average (%)	97	91	100
1:16	Range (%)	88-104	85-98	91-98
	Average (%)	96	90	95

Troubleshooting

If the results are not good enough, please take pictures and save the experimental data in time. Keep the used plate and remaining reagents. Then contact our technical support to solve the problem. Meanwhile, you could also refer to the following materials:

Problem	Causes	Solutions		
Poor standard curve	Inaccurate pipetting	Check pipettes.		
	Improper standard dilution	Ensure briefly spin the vial of standard and dissolve the powder thoroughly by gentle mixing.		
	Wells are not completely aspirated	Completely aspirate wells in between steps.		
	Insufficient incubation time	Ensure sufficient incubation time.		
	Incorrect assay temperature	Use recommended incubation temperature. Bring substrate to room temperature before use.		
Low signal	Inadequate reagent volumes Improper dilution	Check pipettes and ensure correct preparation.		
	HRP conjugate inactive or TMB failure	Mix HRP conjugate and TMB, rapid coloring.		
Deep color but low value	Plate reader setting is not optimal	Verify the wavelength and filter setting on the Microplate reader.		
L arga CV	-	Open the Microplate Reader ahead to pre-heat. Check pipettes.		
Large CV	Inaccurate pipetting Concentration of target protein is too high	Use recommended dilution factor.		
High background	Plate is insufficiently washed	Review the manual for proper wash. If using a plate washer, check that all ports are unobstructed.		
	Contaminated wash buffer	Prepare fresh wash buffer.		
Low	Improper storage of the ELISA kit	All the reagents should be stored according to the instructions.		
sensitivity	Stop solution is not added	Stop solution should be added to each well before measurement.		

Declaration

- 1. Limited by current conditions and scientific technology, we can't conduct comprehensive identification and analysis on all the raw material provided. So there might be some qualitative and technical risks for users using the kit.
- 2. This assay is designed to eliminate interference by factors present in biological samples. Until all factors have been tested in the ELISA immunoassay, the possibility of interference cannot be excluded.
- 3. The final experimental results will be closely related to the validity of products, operational skills of the operators, the experimental environments and so on. We are only responsible for the kit itself, but not for the samples consumed during the assay. The users should calculate the possible amount of the samples used in the whole test. Please reserve sufficient samples in advance.
- 4. To get the best results, please only use the reagents supplied by the manufacturer and strictly comply with the instructions.
- 5. Incorrect results may occur because of incorrect operations during the reagents preparation and loading, as well as incorrect parameter settings of the Micro-plate reader. Please read the instructions carefully and adjust the instrument prior to the experiment.
- 6. Even the same operator might get different results in two separate experiments. In order to get reproducible results, the operation of every step in the assay should be controlled.
- 7. Every kit has strictly passed QC test. However, results from end users might be inconsistent with our data due to some variables such as transportation conditions, different lab equipment, and so on. Intra-assay variance among kits from different batches might arise from the above reasons too.
- 8. Kits from different manufacturers or other methods for testing the same analyte could bring out inconsistent results, since we haven't compared our products with those from other manufacturers.
- 9. The kit is designed for research use only, we will not be responsible for any issues if the kit is applied in clinical diagnosis or any other related procedures.